

Line Drawing Interpretation

Martin Cooper

Line Drawing Interpretation

123

Martin Cooper, MA, PhD
University of Toulouse III
France
cooper@irit.fr

ISBN 978-1-84800-228-9 e-ISBN 978-1-84800-229-6
DOI 10.1007/978-1-84800-229-6

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2008928522

c© Springer-Verlag London Limited 2008
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publish-
ers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the
publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Printed on acid-free paper

Springer Science+Business Media
springer.com

Preface

The computer interpretation of line drawings is a classic problem in artificial
intelligence (AI) which has inspired the development of some fundamental AI
tools, including constraint propagation, probabilistic relaxation, the characteri-
zation of tractable constraint classes and, most recently, the propagation of soft
constraints in finite-domain optimization problems. Line drawing interpretation
has many distinct applications on the borderline of computer vision and com-
puter graphics, including sketch interpretation, the input of 3D object models
and the creation of 2 1

2D illustrations in electronic documents.
I hope I have made this fascinating topic accessible not only to computer

scientists but also to mathematicians, psychologists and cognitive scientists and,
indeed, to anyone who is intrigued by optical illusions and impossible or am-
biguous figures.

This book could not have been written without the support of the CNRS,
the French Centre National de Recherche Scientifique, who financed my one-year
break from teaching at the University of Toulouse III. The UK Engineering
and Physical Sciences Research Council also financed several extended visits
to the Oxford University Computing Laboratory. Section 9.1 is just a brief
summary of the results on tractable constraints that have come out of this
very productive joint research programme with David Cohen, Peter Jeavons
and Andrei Krokhin. The various soft arc consistency techniques described in
Chapter 8 were developed in collaboration with Thomas Schiex and Simon de
Givry at INRA, Toulouse. I am also grateful to Ralph Martin and Peter Varley
for their comments on the line-labelling constraints presented in Chapter 3.

Last but not least, no words can express my gratitude to Catherine and our
two daughters, Ashley and Diana, for everything else.

v

Contents

Preface v

1 Introduction 1

2 Impossible Pictures 5
2.1 Losing the Third Dimension . 7
2.2 Two Planar Surfaces . 8
2.3 Depth Order of Surfaces at a Point 10
2.4 Cubic Corners and Improbable Objects 12
2.5 Impossible Intersections . 14
2.6 Impossible Wireframe Projections 17

3 Labeling Line Drawings of Polyhedra 21
3.1 Historical Background . 21
3.2 Line Drawing Labelling as Optimization 25
3.3 Parallel-Lines Constraint . 26
3.4 A Universal Constraint for Simple Junctions 32
3.5 Lines Sharing the Same Two Regions 38
3.6 Cyclic-Path Constraint . 41
3.7 Parallel Junctions on Distinct Faces 44
3.8 Encoding of Soft Constraints . 50
3.9 Non-Manifold Scenes . 52
3.10 Discussion . 52

4 Discrete Inflation Using Cubic Corners 55
4.1 Computer-Enhanced Perception 55
4.2 Machine Interpretation of Line Drawings 56
4.3 Depth Labels . 57
4.4 Depth Labels and Impossible Figures 61
4.5 Propagation of Depth Labels . 65
4.6 Orthogonality Constraints on Cubic Corners 67
4.7 Experimental Trials . 70
4.8 Adding Depth Information to Line Drawings 72
4.9 Vertices Which Are Not Cubic Corners 73

vii

viii CONTENTS

4.10 Discussion . 75
4.11 Conclusion . 76

5 A Rich Labeling Scheme for Curved Objects 79
5.1 Labeling Line Drawings of Curved Objects 79
5.2 Regularities in Man-Made Objects 82
5.3 Planarity Constraints . 84
5.4 Constraints from Orthogonal Edges 87
5.5 Examples of Drawing Interpretation 91
5.6 Complete 3D Reconstruction . 94
5.7 Discussion . 95

6 Depth Recovery Through Linear Algebra 97
6.1 Gradient Space and Gradient Directions 97
6.2 Linear Constraints and Curved Objects 100
6.3 Formulation of Linear Constraints 102
6.4 Deriving Linear Constraints from a Drawing 105

6.4.1 Vanishing Point Constraint 105
6.4.2 Constraints from Collinearity or Intersections 105
6.4.3 T-junction Constraint . 106
6.4.4 Convex/Concave Edge Constraints 107
6.4.5 Coplanarity Constraints 112
6.4.6 Hidden-Surface Coplanarity Constraints 114

6.5 Orthographic Projection . 117
6.6 Physical Realizability of Drawings 118
6.7 The Computational Problem . 119
6.8 Conclusion . 122

7 Wireframe Projections 125
7.1 Introduction . 125
7.2 Semantic and Numerical Line Labels 127
7.3 Realizability . 130
7.4 All Wireframes Are Ambiguous 141
7.5 Identifying Faces . 142
7.6 Common-Surface Constraints . 146
7.7 Coplanarity Constraints . 147
7.8 Unambiguous Wireframes . 150
7.9 Residual Ambiguity . 153
7.10 Constraints Between Distant Lines 155
7.11 Tetrahedral Vertices . 163
7.12 Tangential Edges and Surfaces 169
7.13 Rich Labelling Scheme . 173
7.14 Discussion . 178
7.15 Conclusion . 180

CONTENTS ix

8 Simplification of Combinatorial Problems 183
8.1 Transformations of Combinatorial Problems 183
8.2 When Local Reductions Suffice 185
8.3 Arc Consistency . 187
8.4 Neighbourhood Substitution . 189
8.5 Simplification of Soft Constraint Problems 191
8.6 Valuation Structures . 192
8.7 Valued Constraint Satisfaction 194
8.8 Soft Arc Consistency Techniques 195
8.9 Optimal Soft Arc Consistency . 198
8.10 Virtual Arc Consistency . 203
8.11 VAC Decomposition . 209
8.12 Soft Neighbourhood Substitution 212
8.13 Discussion . 214

9 Tractability of Drawing Interpretation 217
9.1 Tractable Constraint Classes . 217

9.1.1 Zero/One/All Constraints 217
9.1.2 Max-Closed Constraints 219
9.1.3 Characterization of Tractable Boolean Constraints 220
9.1.4 Characterization of Tractable Boolean Valued Constraints 221

9.2 Complexity of Line Drawing Interpretation 224

10 3D Reconstruction of Ambiguous Pictures 231
10.1 Reconstruction of Frontal Geometry 231
10.2 Hidden-Part Reconstruction . 233

Bibliography 237

Index 251

Chapter 1

Introduction

Human vision appears both effortless and universal. No conscious thought is
required to interpret a two-dimensional (2D) image as a three-dimensional (3D)
scene. Although there is undoubtedly a learning period during early childhood,
we have no recollection of it, which leaves us with the impression that our ability
to see is innate and hence inherently mysterious. This impression is comforted
by the fact that everyone seems to see the same objects when presented with
emotionally neutral images, such as line drawings of polyhedral objects. Can
we imagine seeing anything else other than a cube in Figure 1.1(a) or a house
in Figure 1.1(b)? Is drawing, then, a universal natural language accessible
to everyone without the need to learn tedious lists of vocabulary and rules of
grammar? Artists, illustrators, draughtsmen, cartographers and photographers
spend their professional lives producing images. Diagrams are an essential part
of many technical reports and presentations. Images of all kinds are important
pedagogical tools at all levels of teaching.

Of course, it is clear that pictures alone cannot represent the same range of
abstract ideas that can be represented in words. For example, using the picture
in Figure 1.1(b) to represent all houses (from a fisherman’s cottage to a stately
home) would be the definition of a pictorial symbol which, in the end, would be
no less arbitrary than the word ‘house’.

���

���

�
�

�
� ���

���
�

�

�
�

(a)

�
�

�
�

�
�

��

(b)

�
�

��

�
� �

�

�
�
��

Figure 1.1: Simple drawings of polyhedral objects.

1

2 CHAPTER 1. INTRODUCTION

�
�

�
�

�
�

��

(a)

�
�

�
�
�� �

�
��

�
�

��

��

����

���

�

�

�
�

��
�

�
�

�

(b)

P

1 2
�

���

����

���

�

�
�
�

��
�

�
�

�

(c)

Figure 1.2: (a) A distorted house; (b) an incorrect drawing of an object; (c) the
correct drawing of the same object.

����

����

��

��
��

����������

����������

������������

����

��

������
1

2 ��������

��������

��

��

��

����
��

��
��

������

������

��

�

�����

�������

�

1

2

Figure 1.3: Two impossible pictures illustrating the same geometrical constraint.

As with written or spoken language, picture understanding is much easier
than picture production. Consider the incorrectly drawn house in Figure 1.2(a),
which now appears distorted. Figure 1.2(b) demonstrates a typical but subtle
geometric error that is easily made: point P has mistakenly been drawn so as
to be collinear with line 1, when it should, in fact, be collinear with line 2, as in
the correct projection in Figure 1.2(c). These examples demonstrate that line
drawings do have their own rules of syntax and semantics. This is highlighted by
the study of impossible pictures and their reasons for impossibility. For example,
the two pictures in Figure 1.3 are both impossible because they break the same
geometrical constraint that two planes cannot intersect along two non-collinear
lines (marked 1 and 2 in the drawings).

The computer analysis of line drawings is a classic problem in Artificial
Intelligence (AI). The first major breakthrough was to identify the important
subproblem consisting of labelling the lines in a drawing of a polyhedron as
convex, concave or occluding [20, 75]. This subproblem is a classic example
of how a global solution can be specified by a simple set of local constraints:
in this case, the lists of the possible labellings of each type of junction. The
line-labelling problem proved to be an inspiration for such widely applicable
techniques as arc consistency [173, 108] and probabilistic relaxation [136]. The
study of tractable constraint satisfaction problems is also intimately linked with
the line-drawing-labelling problem [90, 127, 36].

CHAPTER 1. INTRODUCTION 3

	
	

		

	
	

		

	
	

		

	
	

		

(a)

�
��

�
��

�
��

�
��

(b)

Figure 1.4: The wireframe projection (a) is ambiguous (since it could be either
the top or the side of the object, which is planar), whereas (b) does not suffer
from the same type of ambiguity.

A landmark result was Sugihara’s necessary and sufficient conditions for
a line drawing to be realizable as the projection of a polyhedral scene [154].
This meant that line drawing interpretation was seen as a mixture of constraint
satisfaction (over finite domains) and linear algebra (over real domains).

In certain computer vision applications, where high-quality images of unclut-
tered scenes are available, a raw image may be converted into a line drawing by
edge detection and linking. Alternatively, the drawings to be analysed may have
been produced by hand: obtained via a graphic pen or a mouse, for example,
or by digitizing a traditional pen-and-paper drawing. However, line drawings
derived from raw images and hand-produced drawings have different character-
istics, as do technical drawings and sketches. For example, an occlusion edge
cannot be detected in an image if there is insufficient contrast between the oc-
cluding and occluded surfaces. Hand-drawn sketches, on the other hand, are
often far from being true projections of physically possible 3D scenes, as the
examples in Figure 1.2 amply illustrate.

To cope with imperfections in the input and to overcome the inevitable
ambiguity of a 2D projection of a 3D scene, we have to express line drawing
interpretation as an optimization problem. This has led many workers to apply
standard but incomplete optimization methods (such as hill climbing, simulated
annealing and genetic algorithms) to the real-valued variables of the problem.
A complementary approach is to perform a complete search over finite-domain
variables in an appropriately chosen subproblem. This approach can profit
from recent progress on optimization problems over finite domains, including
various soft consistency techniques and the characterization of tractable classes
of soft constraints [115]. For example, we show in Chapter 7 how soft constraint
satisfaction allows us to automatically recognize that the wireframe projection
in Figure 1.4(a) is ambiguous but that the similar drawing in Figure 1.4(b)
is not.

Computer visionapplications inwhich some formof linedrawing interpretation

4 CHAPTER 1. INTRODUCTION

has been employed include scene analysis, robot navigation and object recogni-
tion. Matching high-level primitives such as vertices, faces or parts of objects,
rather than pixels, increases the accuracy of parameter estimation in such appli-
cations as stereo matching or motion analysis. The detection of these primitives
may use some local form of line drawing interpretation. The correspondence
problem between two line drawings of curved objects is discussed in detail in [31].

The interpretation of hand-made line drawings (whether produced by scan-
ning a pen-and-paper drawing or entered via a mouse or data tablet) has appli-
cations in the creation of 3D object models such as boundary representation or
constructive solid geometry models. Company et al. [27] provide a recent survey
of work on the 3D reconstruction of line drawings over the last 30 years. They
point out the gradual shift of research effort from the analysis of engineering
drawings [2] to the interpretation of freehand sketches. A typical application is
the addition of new elements to an existing view of the interior or the exterior
of a building to create a virtual image of the renovated building [162]. An in-
triguing new application area is in 3D object retrieval from large databases or
the web [124].

The obvious input data for complete 3D object reconstruction is a wireframe
projection (a line drawing in which all edges are represented, including those
facing away from the viewer or occluded by a nearer surface). The labelling
of wireframe projections was first studied by Huffman [75]. In Chapter 7 we
give necessary and sufficient conditions for a line drawing to be a legal wire-
frame projection of a curved object. If the input is a standard line drawing of
an opaque object in which only visible edges are shown, then complete object
reconstruction is highly under-constrained. Systems for hidden face recovery
[57, 18] use both strict geometrical constraints and Gestalt principles of human
perception such as symmetry, simplicity and closure in order to choose the most
likely 3D object.

Another range of applications is the computer enhancement of drawings. For
example, estimating the gradients of surfaces allows the computer to automati-
cally add shading information to a drawing. Furthermore, electronic publishing
opens up the possibility of creating documents containing virtual 3D figures.
Even simple histograms, tree diagrams or maps can potentially convey much
more information if given a third dimension which the reader is allowed to ex-
plore by changing the viewpoint.

Chapter 2

Impossible Pictures

Impossible pictures have proved to be an important source of geometric con-
straints which can be applied by a computer program when interpreting line
drawings. Although this is our main motivation, there are several other rea-
sons why impossible pictures have been studied. M.C. Escher raised the study
of impossible pictures to an art form by incorporating them into his etchings.
Psychologists and cognitive scientists have used pictures of impossible objects to
investigate human visual processing and memory. Figure 2.1 shows the kind of
impossible pictures used in psychological experiments to determine how shapes
are represented in the brain [113, 172]. Certain odd-looking pictures appear to
represent impossible objects but can, in fact, be realized as the projection of
a polyhedron. Sugihara [156] suggested using the unfolded surface of such a
polyhedron as a toy so that children could play at constructing the ‘impossible’
object.

Sugihara distinguished between different classes of impossible drawings [153].
An important subclass of impossible drawings (called correctable) are those
that can be rendered realizable by adjusting the positions of junctions without

�
�

�
�

�
�

�
��

�

�

�

�

�

�

�
��

���������

����������������

��

����
��

��

����
����

����
����

�
�

�

�
�

�

�
�

�

��

�

��

���
�

�
�

���
�

�
�

�

������

Figure 2.1: Pictures of impossible objects used in psychological experiments.

5

6 CHAPTER 2. IMPOSSIBLE PICTURES

�
�

� 	
	

	�
�

�
�

�
�

�
�

�
�

��
��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

�
��

�

�

(a)

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
���

��
�
�
�
�
���

�
�

�
�

(b) �

�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�

�
�

�
�

�

�
�

�
�

�
�

(c)

Figure 2.2: (a) A physically realizable drawing; (b) an impossible but correctable
drawing; (c) an impossible and uncorrectable drawing (adapted from [144]).

altering the basic configuration of the drawing (i.e. the planar graph repre-
senting the adjacency of junctions and lines together with the set of pairs of
lines meeting at an angle less than π). Figure 2.2 shows examples of (a) a
possible drawing, (b) an impossible but correctable drawing, (c) an impossible
and uncorrectable drawing. The three edges of the pyramid in Figure 2.2(b)
should meet at a point when extended: this can easily be fixed by changing
the position of a single Y junction. In this section we provide an informal but
finer classification of impossible drawings by enumerating some basic reasons for
their impossibility. This discussion was inspired by classic examples of impos-
sible figures [61, 134, 144]. The most aesthetically pleasing impossible pictures
are those that have been specifically designed to be locally coherent but for
which no coherent global interpretation exists. We begin by studying perhaps
the most famous example of an impossible figure, the impossible tribar, discov-
ered by Oscar Reutersvaärd in 1934 and independently by Roger Penrose [128]
in 1958.

In all the examples given in this section we assume an orthographic projec-
tion of polyhedral opaque objects from a general viewpoint. Under orthographic
projection, parallel 3D edges project into parallel lines in a drawing. Our as-
sumption of a general viewpoint means that collinear lines in a drawing are
projections of collinear lines in 3D, that parallel lines in a drawing are projec-
tions of parallel lines in 3D, that straight lines in a drawing are projections of
straight lines in 3D, etc.

2.1. LOSING THE THIRD DIMENSION 7

(a)

�
�

�
�

�
�

�
�

�
�

�

��
�

�

�
�

�

�
�

�

��

(b)

�
�

�
�

�

�
�

�
�

�

�
�

�

�

�
�

�
�

�
�

�

�
�

�

��

(c)

�
�

�
�

�

�
�

�
�

�

�
�

�

�

�
�

�
�

�
�

�

�
�

�

��

�
�

����

��
�
�
�
�

�
�

���

Figure 2.3: (a) A possible figure; (b),(c) an impossible figure.

2.1 Losing the Third Dimension

Consider a simple class of objects consisting of polyhedra with faces parallel to
one of three orthogonal directions, with a square cross-section and topologically
equivalent to a torus. Figure 2.3(a) is a physically realizable drawing of one
such object. However, the drawing in Figure 2.3(b) is not physically realizable,
as can be verified by counting bricks in Figure 2.3(c). Let the X , Y and Z axes
represent respectively the horizontal, vertical and depth axes in 3D. Consider a
3D object composed ofm segments parallel to theX axis (of lengths x1, . . . , xm),
n segments parallel to the Y axis (of lengths y1, . . . , yn) and p segments parallel
to the Z axis (of lengths z1, . . . , zp). Since the object is equivalent to a closed
curve, we can assign an arbitrary order to these segments corresponding to a
circuit C. Segment lengths xi, yj , zk are considered to be negative if the value
of x, y, z decreases as we follow the circuit C. A necessary condition for the
object to be realizable is that the net displacement along the circuit C must be
zero, i.e.

m∑

i=1

xi =
n∑

j=1

yj =
p∑

k=1

zk = 0. (2.1)

We can easily verify that Equation (2.1) is not satisfied by the object depicted
in Figure 2.3(b),(c), which proves that it is not physically realizable.

For the lines to join up in 2D we only require that (under an appropriate
choice of units in the x, y and z directions)

m∑

i=1

xi +
p∑

k=1

zk =
n∑

j=1

yj +
p∑

k=1

zk = 0. (2.2)

Figure 2.4 shows five examples of impossible figures, including the famous
Penrose triangle and the most elementary impossible staircase [128]. In each
case, the figure is impossible since Equation (2.2) is satisfied but Equation (2.1)
is not. We call this the impossible closed curve class of impossible drawings.

8 CHAPTER 2. IMPOSSIBLE PICTURES

�
�

�
�

��
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
���

�
�

�
�

�
�

�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�

�
�

�

�
��
�

Figure 2.4: Some examples of impossible figures.

2.2 Two Planar Surfaces

In the classic machine-vision approach of Huffman [75] and Clowes [20], the aim
is to find an incomplete but nevertheless very informative representation of a
3D scene by labelling each line segment in the drawing as the projection of an
occluding, a convex or a concave edge. These are known as semantic labels.
The only constraints are provided by a catalogue of junction labellings, derived
by imagining all possible projections of physically possible vertices. However,
there is also an unstated but inherent geometrical constraint which is used in
this approach, namely that the semantic label of a straight line which is the
projection of the intersection of two planar faces is invariant between junctions.

The absence of a semantic labelling proves that a drawing is physically im-
possible. The most famous example is the impossible fork: Figures 2.5(a) and
(b) show two variations. A more subtle example is given in Figure 2.6 (based
on an example by Penrose [129]). Line i in Figure 2.6 is concave if and only if
line (i+ 1) mod 5 is convex (for i = 0, . . . , 4). There can clearly be no solution
when the number of such lines (in this case 5) is an odd number.

Unfortunately, many other examples of impossible figures cannot be detected
by semantic labelling alone, since they have a global legal labelling, notably
drawings from the impossible closed curve class (Figure 2.4)

Figure 2.7(a) shows a classic example of an impossible figure which is the
basis for M.C. Escher’s famous etching ‘Belvedere’. To see that this is an im-
possible projection of a polyhedron, note that no perfectly planar face F can
occur simultaneously on both sides of a 3D edge since there can be no gradient
or depth discontinuity within F , and yet this is what occurs along the occluding
lines 1 and 2 in Figure 2.7(a). We can, in fact, find other reasons to declare
this an impossible figure. Consider the reduced version in Figure 2.7(b). In this
reduced version, surfaces S and S′ appear to be coplanar, but T intersects S
and S′ along two non-collinear lines, which is impossible if all faces are planar.
It is interesting to note that, despite the fact that both of the objects depicted

2.2. TWO PLANAR SURFACES 9

(a)

(b)

�

�

�

��

��

��

��

��

��

��

��

������

������

����

����

������

������

����

����

������

������

������

������
������

�

���
���

��
��

��
��

��
��

��
��

��

��

��

��

��

�

�

(c)

Figure 2.5: (a),(b) Impossible forks; (c) another impossible drawing in which
lines appear to have different semantic labels at their two ends.

�
�

�
�

�
�

�
�

�
�

�
�

��

�
�

�

�
�

�

�
�
�

��

�
�

�
��

��
�

�
�

�
�

�
�

�
�

�
�
�

�
�

�

�
�
�

��

���������������

���

���
���

�� ��
�����

���

������

������

���

�
�

�
�

�
�
�

�
�

�

�
�
�

�
�

�

�
�

�

�
��

�
�

�
��

�
�

�
�

�
�

�
�

�
�

�

�
�
�

�
�

�
�

�
�

�
�

�
��

���������������

���

���

��

���
�����

�����������������������
1

2

3

4

0

Figure 2.6: A drawing which has no legal labelling in terms of concave and
convex edges.

10 CHAPTER 2. IMPOSSIBLE PICTURES

���������

���������

���������

���������

�����

�����

�����

�����

�������

�������

�������

�������

���

���

���

���

�������������

������

�������

��

���

��

���

B

A

1

2

�

���������

���������

����������

�����

�

�����

�����

��������

�������

�������

����

��

�������

������

�������

���

���

���

���

S

T

S′

T

Figure 2.7: (a) An impossible figure resuming the basic structure of M.C.
Escher’s 1958 etching ‘Belvedere’. (b) A reduced version.

in Figure 2.7 are physically impossible, most people would agree that one is a
subset of the other.

Another recipe for producing impossible figures is to deliberately produce
depth incoherencies. Consider firstly the simple case of two planar faces A, B
(not parallel to the line of sight) under orthographic projection. Let dA(x, y),
dB(x, y) denote the depths of faces A, B at the scene point projecting into image
point (x, y). Then dA,dB are linear functions of x and y. Hence dB − dA is also
a linear function of x and y and can itself be considered as a plane. Such a
function is not planar if it contains a ridge, a peak or a saddle point. Figure 2.8
shows examples of impossible figures in which (save for accidental alignment)
d(B)−d(A) contains a peak or a saddle point. (The case of a ridge is even easier
to produce and can be considered as the limiting case of either of these two cases
in which two points marked ◦ coincide.) The two drawings in Figure 2.8 also
contain many other visual cues, such as lines on face A which are parallel to
lines on face B. Figure 2.9 shows an example of an impossible figure which is
only impossible by the “no peak in d(B) − d(A)” rule.

2.3 Depth Order of Surfaces at a Point

Consider a vertical line L in a drawing, separating regions SL and SR lying
(respectively) to the left and right of L. Suppose that PL, PR are the planes
of the faces visible in regions SL, SR (respectively). If L is the projection of a
convex edge, then PL lies in front of (behind) PR at all points to the left (right)
of L. Returning again to the Penrose triangle, illustrated in Figure 2.10(a), we
can also deduce its impossibility by reasoning about the relative depth of planes.
The Penrose triangle appears to have three planar faces S, T , U . Let PS , PT ,

2.3. DEPTH ORDER OF SURFACES AT A POINT 11

(a)

◦ ◦

◦

•

�

�

�

�

�
�

�

�

�

B

A

(b)

◦ ◦

•

•

�
�

� �

� �

�

�

�

�

�

B

A

Figure 2.8: (a) A figure which is impossible since there would be a peak in
d(B)−d(A); (b) a figure which is impossible since there would be a saddle point
in d(B)− d(A). In both cases • represents an image point where A occludes B
and ◦ represents a point where B occludes A.

A

B

����������������������������

����������������������������

��

�
�

� �

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

������������
����������������

�
�

�

�
��

�
�

�
�

�
�

�

�
�

�
��

Figure 2.9: A figure which is impossible due to a peak in d(B) − d(A).

12 CHAPTER 2. IMPOSSIBLE PICTURES

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

��

�
�

�
�

�
��

����
�

�
�

�
�

��

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
��

A

B

C

D

E F

S

S

T T

U

U

(a)

�
�

�
�

�
�

�
�

�
�� �

��

���� �
�� �

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
���

��
��
��

����

�
�

�
�

�
�

�

�
�

�
�

�
�

�

�
��

�
��

(b)

Figure 2.10: (a) The Penrose triangle; (b) a partially occluded Penrose triangle.

PU be the planes of these three faces. Furthermore, we see AB, CD and EF as
convex edges. Consider now a point Q in the very centre of the inner triangle.
By the reasoning above, we can deduce that at point Q, PS is in front of PT , PT

is in front of PU , and PU is in front of PS . This is clearly impossible. Observe
that this argument applies to various versions of the same drawing, such as the
partially occluded Penrose triangle shown in Figure 2.10 or a Penrose triangle
in which some lines are curved (see Figure 6.20 in Chapter 6).

We will show in the next chapter that we can impose constraints on the
labelling of sets of lines by disallowing such impossible depth cycles. These
extra constraints complement traditional constraints given by a catalogue of
labelled junctions. For example, the labelling (+,+,+) for lines AB, BC, CD
in Figure 2.11 is illegal: since AB and DC are parallel, they meet at a point
Q at infinity (as we extend both AB and DC upwards), surface S necessarily
passes through Q, and the convex label for BC implies that surface T passes
behind Q, but this then contradicts the fact that DC passes through Q. In
general, a labelling for a set of lines is illegal if it implies that at some point
Q the depths d1, . . . , dr of surfaces S1, . . . , Sr satisfy d1 ≤ d2 ≤ . . . ≤ dr < d1

[77, 43].

2.4 Cubic Corners and Improbable Objects

Faced with an ambiguous drawing, we tend to see familiar features, such as cu-
bic corners (vertices formed by the intersection of faces lying in three mutually
orthogonal planes). An interesting example which illustrates the preference of
human vision for cubic corners is shown in Figure 2.12(a). Our first impression
is that this is a drawing of three cubes. However, we can see that this interpre-
tation is physically impossible by looking at the central Y junctions of the three
blocks. The stems of these three Y junctions are all parallel, as are the three

2.4. CUBIC CORNERS AND IMPROBABLE OBJECTS 13

�
�

�
�

�
�

�
�

�
�

�
�+

+

+A

B

D

C

S

T

Figure 2.11: An object which is an impossible projection of a polyhedral object
in which AB, CD are parallel.

��
����

��
��

��

��
����

��

��
��

�

��
��

�

��
��

1

2

3

(a)

�����

�����

�
�

�
�

�����
�

�

�
�

�
�

�
�

���

���

�
�

� ��������

�
�

�
�

�
�

�

�
�

�
�

�
�

�

�
��

�����

(b)

Figure 2.12: (a) A drawing which is not the projection of a collection of objects
with cubic corners; (b) a drawing which is impossible if collinear lines in the
drawing are projections of collinear 3D edges.

14 CHAPTER 2. IMPOSSIBLE PICTURES

right branches, but the left branches (lines 1, 2, 3) are not parallel. We are
forced to deduce that at least one of the objects is not a cube. It is interesting
to note that even when a drawing is clearly impossible, as in Figure 2.12(b),
we are still capable of producing a globally incoherent but locally coherent in-
terpretation. For example, all the vertices in Figure 2.12(b) are interpreted as
cubic corners, which allows us to assign a gradient to each visible surface.

The human tendency to see cubic corners whenever this is locally coherent
provides another contradiction when trying to find a globally coherent interpre-
tation of Figure 2.7(a). When we observe vertex A, we have the impression that
it is a cubic corner with the directed edge AB sloping away from the viewer.
When we observe vertex B, we have the impression that it is a cubic corner
with the directed edge AB this time sloping towards the viewer. In fact, we see
contradictory slopes on all vertical lines in the drawing. Despite these contra-
dictions, we nevertheless interpret all vertices of the object as cubic corners.

As observed by Burns [17], cubic corners abound in man-made objects due to
gravity and common manufacturing methods such as carpentry. We are so used
to seeing objects with cubic corners that a physically realizable drawing which
cannot be the projection of an object with cubic corners sometimes appears
highly improbable. Figure 2.13 gives a very striking example; the drawing in
Figure 2.13(a) appears possible whereas the drawing in Figure 2.13(b) appears
impossible. Sugihara [156] has pointed out that drawings such as Figure 2.13(b)
are in fact realizable as a projection of objects in which some of the vertices are
not cubic corners, but it is practically impossible for a human being to see the
correct interpretation. Our preference for cubic corners is so strong that in
this case human vision fails miserably compared to machine vision, which can
correctly reconstruct a 3D scene projecting into this drawing.

2.5 Impossible Intersections

Another important condition that must be satisfied by a valid 3D interpretation
is that no two objects (or parts of the same object) can occupy the same point in
3D space. The drawing in Figure 2.14(a) is unrealizable (assuming that faces A,
B are parallel and that faces C, D are parallel), since the object should intersect
itself but does not. Figure 2.14(b) shows a similar example: the presence of
collinear and parallel lines implies that surfaces T and U are parallel, which
means that the hole in surface S is too small.

An important challenge is to explain more subtle examples of drawings which
are unrealizable as the projection of objects with cubic corners and to translate
this explanation into a simple generic constraint. Figure 2.15(a) shows an ex-
ample of an improbable drawing. To demonstrate that it is unrealizable as the
projection of objects with cubic corners, we require some rather complex reason-
ing such as the following: AB and CD are parallel, hence surfaces S and T are
parallel (assuming A and C are cubic corners); raising surface T so it coincides
with surface S provides a contradiction since the width y of T is too large (as
shown in Figure 2.15(b)). The challenge is to find a psychologically plausible

2.5. IMPOSSIBLE INTERSECTIONS 15

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

		

	
	

	
	

	
	

	
	

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

��

�
�

�
�

�
�

��

��

�
�

�

�
�

�
��

�
�
�

�
��

�
�

�
�

��

�
�
�

�
�

�
�

�

�
�

��

�
�
�

�
��

��

��

��

��

������� ����� ����

��������
��������

����������

�����
�

(a)

	
	

	
	

	
	

	
	

		

	
	

	
	

	
	

	
	

		

	
	

	
	

	
	

		

	
	

	
	

	
		

	
	

	
	

	
	

		

	
	

	
	

	
	

	
	

		

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
��

�
�

�
�

�
��

�
�

��

�
�

�
��

�
�

�
��

� �

�
�

�
�� �
� �� �

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

��

(b)

Figure 2.13: Figures which are seen as possible (a) and impossible (b) projec-
tions of objects with cubic corners.

16 CHAPTER 2. IMPOSSIBLE PICTURES

(a)
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

A

B

C

D

(b)

S

T

U

R

�
�

�
�

�
�

�
�

�

�

�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�������������
�

Figure 2.14: (a) A drawing which is unrealizable if faces A, B are parallel and
faces C, D are parallel; (b) a drawing which is unrealizable if surfaces R, S are
parallel and faces T , U are parallel.

2.6. IMPOSSIBLE WIREFRAME PROJECTIONS 17

(a)

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��
�

�
�

��
��

��

�
�

������
������

����

�
�

�

�

(b)

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��
�

�
�

��
��

��

�
�

������
������

����

�
�

�

�

...

. ...
...
...

....
....

.
.........

������
yA

B

C

D

S T

Figure 2.15: A drawing which is not realizable as a collection of objects with
cubic corners since the distance x between the two parallel dotted lines on
surface S is less than y.

explanation for the capacity of human vision to detect such contradictions.

2.6 Impossible Wireframe Projections

An artist’s line drawing usually only depicts the visible edges of a 3D scene; those
edge-segments which are occluded by faces nearer the viewer are invisible. On
the other hand, a wireframe projection of an object is a projection of all the edges
of the object, including occluded edges. Traditionally, engineering drawings are
wireframe projections, in order to allow the draughtsman to depict both the
back of the object and any internal structure (such as holes or concavities).
Wireframe projections are the natural choice of input to a program whose aim
is the 3D reconstruction of an object from one or more drawings.

The drawings in Figure 2.16(a)-(d) are impossible wireframe projections of
solid objects. Consider, for example, Figure 2.16(b). When attempting to inter-
pret this drawing as a solid object, we identify three trapezoidal faces ABCD,
CDEF , EFAB. However, trying to complete a solid model by adding other
faces leads inevitably to failure. For example, ABCF cannot be a valid face
since this would mean that three faces terminated alongAB; this is impossible in
a manifold object. In Chapter 7 we extend the traditional line-labelling problem
to wireframe projections by labelling each line not only with a semantic label
(convex, concave, occluding) but also with two numerical labels indicating the
number of surfaces in front of and behind the edge. This labelling scheme detects
the physical impossibility of the wireframe projections in Figure 2.16(a)-(d).

Figure 2.16(e) has a legal labelling but is not the wireframe projection of a
polyhedron. In fact, due to digitization errors, most drawings will not satisfy

18 CHAPTER 2. IMPOSSIBLE PICTURES

�
�

�

�
�

�

�
�

�
�

�
�

� �
� �

������������������������������������

����������

�������������
�

�
�

�
�

��������

(a)

�
�

�
�

�
�

��

�
�

�
�

�
��

����

�
�

�
�

�
�

��

�
�

�
�

�
��

A B

C

DE

F

(b)

�

�

�

�

�

�

�

�

(c)

�

�

�

�

�

�

�

�

(d)

	
	

	

�
�

�
�

�
�K

J

L

M

(e)

Figure 2.16: (a)-(d) Examples of impossible wireframe projections of solid
objects; (e) an impossible wireframe projection of a polyhedron.

2.6. IMPOSSIBLE WIREFRAME PROJECTIONS 19

the necessary geometrical constraints to be a valid projection. This problem
is known as superstrictness [155]. The correction of impossible drawings is a
challenging problem in its own right. For example, to correct Figure 2.16(e)
we have many choices, including: shifting junction J to the left (to produce
a parallelepiped), shifting junction K or junction L to the right (to produce
a wedge-shaped object), shifting junction M to the left (to produce an object
with only one rectangular face) or simultaneously shifting all eight junctions (to
produce an object with no rectangular faces).

Chapter 3

Labeling Line Drawings
of Polyhedra

3.1 Historical Background

The interpretation of line drawings is a classic problem in machine vision. The
pioneers in this field [20, 75] concentrated on perfect projections of opaque
polyhedral objects and on the problem of labelling each line as concave, convex
or occluding. Each line L in a drawing is assumed to be the projection of a
3D edge formed by the intersection of two planar surfaces S1, S2. Line L is
occluding if only one of S1, S2 is visible in the drawing. Otherwise, L is concave
or convex depending on whether the exterior angle between S1 and S2 is less
than or greater than π, respectively. With the further restriction to trihedral
vertices (i.e. vertices formed by the intersection of three faces), there are only a
limited number of legal labellings for each different junction type (L, Y, W, T).
The complete list of legal junction labellings is often known as the Huffman–
Clowes catalogue.

When three distinct planar surfaces meet at a point to form a 3D vertex, they
divide space into eight octants. Each octant may be empty or filled with matter.
Figure 3.1 shows the six possible trihedral vertices thus obtained, assuming that
the object is a 3D-manifold in the neighbourhood of the vertex. (There is, in
fact, a seventh vertex which is not shown since it is simply a reflected version
of vertex C). The viewpoint may be situated in any of the empty octants.
By exhaustion, it is easy to draw up a list of all labelled projections of the
vertices in Figure 3.1 from all possible viewpoints. This catalogue is given in
Figure 3.2. All rotations of these labellings are clearly also legal, which means,
for example, that a Y junction has, in fact, five possible legal labellings. Many
workers considered an even simpler set of possible vertices by (rather arbitrarily)
disallowing vertices of type C and D in Figure 3.1 (known as extended trihedral
vertices) in which an edge passes through the vertex.

Although determining whether a given line drawing has a global labelling

21

22 CHAPTER 3. LABELING LINE DRAWINGS OF POLYHEDRA

��

��

��
������

A
��

��

��
������

��

��

��
��

����B

�����

�����

��
��

�����
��

��
����
��

C

��

��

��
������

��

��
������

��

��

��
��
��D

����

����

���������� ����

��

��
������

E

����

��������

����

�� ���� ��

��
����
��F

Figure 3.1: The six basic 3D-manifold vertices formed by the intersection of
three distinct planar surfaces.

consistent with the Huffman–Clowes catalogue is known to be an NP-complete
problem [92], the median-case complexity has been empirically observed to
be O(n) [126] and polynomial-time algorithms exist for certain special cases
[90, 127]. Furthermore, the Huffman–Clowes catalogue is often sufficient to re-
duce the theoretically exponential number of labellings to a manageable number
of legal labellings when it is used in conjunction with the outer-boundary con-
straint, which says that when a drawing represents an isolated object or group
of objects, the outer boundary can be assigned a unique labelling corresponding
to an occluding edge.

This initial success was tempered by the following points:

1. The catalogue of labelled junctions provides necessary but not sufficient
conditions for the physical realizability of a drawing.

2. Classifying lines as projections of concave, convex or occluding edges only
provides partial information about the corresponding 3D scene.

3. The restriction to perfect projection of polyhedral objects with trihedral
vertices is too unrealistic for most vision applications.

Sugihara [154, 155] resolved point 1 above by giving necessary and sufficient
conditions for the physical realizability of a legally labelled line drawing of a
polyhedral scene by expressing the problem as a linear programming problem
whose solution represents the equations of visible faces of the objects in the
scene. This technique theoretically also resolves point 2, but there is often a
great deal of ambiguity in the result which is not present in a human interpre-
tation of the same drawing. For example, a drawing of a cube is immediately

3.1. HISTORICAL BACKGROUND 23

�
�

�

�
�

� +

�
�

�

�
�

� +

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

� −−

�
�

�
	

	
	

+

++�
�

�
�

�
�

	
	

	
	

	
	

−
− −−

��

�
�

�
�

�
�

	
	

	
	

	
	

+ +

−− �
�

�
	

	
	

−

++

�
�

�
�

�
��

�
�

�
�

�

+

−
+

−
+

−
�

�
��

�
�

+

−

?

! !" "

+

!" −

+

!"−

��

!" −

��

!"−

Figure 3.2: The catalogue of labelled junctions which are projections of trihedral
vertices. A question mark represents any label.

24 CHAPTER 3. LABELING LINE DRAWINGS OF POLYHEDRA

interpreted by a human being as a cube, even though it could theoretically be
the 2D projection of any of a large class of parallelepipeds.

Much progress has been made in recent years concerning point 3. Some
systems have been specifically designed to allow for freehand sketching errors
[70, 103, 164]. Catalogues of labelled junctions have also notably been given for
curved objects [32, 109], for curved objects with edges and surfaces which can
meet tangentially [34], for polyhedral objects with tetrahedral vertices [165] and
for drawings of scenes with lighting effects such as shadows [173] and contrast
failure [38]. When the restriction to polyhedral objects with trihedral vertices is
relaxed, theoretical analysis [34, 38] has shown that a catalogue of labelled junc-
tions is insufficient to disambiguate line drawings. Furthermore, experimental
trials indicated that the time complexity to find the best labelling grows with
the number of valid labellings, which is now an exponential function of the size
of the drawing (P.A.C. Varley, pers. com.).

Although junctions can be said to provide most of the information in a
technical drawing, other features provide valuable clues. For example, if we
know the vanishing points of all lines in a drawing of a polyhedral object with
trihedral vertices, then the labelling problem is no longer NP-complete, but can
be solved in polynomial time [127]. Other sources of 3D information include the
collinearity of a line with a junction or another line [37, 38], parallel lines [36]
and straight lines (in the case of curved objects with some straight edges) [37].

When multiple interpretations are possible, many heuristics have been used
to find the most plausible interpretation, such as maximizing commonly occur-
ring 3D features such as right angles, vertical edges, symmetries and parallel
planes, while minimizing the number of distinct objects, angles and edge lengths
in the reconstructed 3D scene [103].

In this chapter we express the line drawing labelling problem as a valued
constraint satisfaction problem [50]. This allows us to mix hard constraints
(which must imperatively be satisfied) with soft constraints expressing prefer-
ences between different combinations of labels. This framework allows us not
only to combine several junction catalogues based on different assumptions (such
as trihedral/tetrahedral vertices, polyhedra/curved objects) but also to express
preferences (for example for right angles or parallel faces).

The main contribution of this chapter is the introduction of novel constraints
between unconnected lines or junctions, based on parallel lines, cycles of lines
or collinearity. These include generic constraints between lines lying on a path
in a drawing as well as preference constraints between the labellings of pairs
of junctions lying on parallel lines. Such constraints are essential to avoid an
exponential number of legal labellings of drawings of objects with non-trihedral
vertices. These non-local constraints permit the propagation of information
between unconnected components of a drawing. Among other things, these
constraints formalize and generalize constraints between holes or bosses and
the boundary of the planar surface on which they lie [167] or between lines
separating the same two regions [90, 168]. These new constraints considerably
strengthen the trihedral catalogue of Huffman [75] and Clowes [20], which is
often insufficient to uniquely identify the correct labelling of a drawing. Our

3.2. LINE DRAWING LABELLING AS OPTIMIZATION 25

constraints thus provide an alternative to Sugihara’s necessary and sufficient
conditions for realizability [154]. Although incomplete, they have the advantage
of being applicable on small subsets of a drawing (in the same way as junction
constraints), whereas Sugihara’s test must be applied to each global labelling,
of which there may be an exponential number.

The strength of these constraints is demonstrated by their ability to iden-
tify the unique correct labelling of many drawings of polyhedral objects with
tetrahedral vertices. These new constraints also allowed us to deduce a general
polyhedral junction constraint for the case where there is no limit on the number
of faces which can meet at a junction.

3.2 Line Drawing Labelling as Optimization

To obtain labelling constraints, such as the Huffman–Clowes catalogue, we must
make assumptions about the 3D scenes which may be represented and the pro-
jection operation which produces the drawing. Common assumptions include
planar faces, trihedral vertices, general viewpoint, general object positions and
perfect projection. We can measure the plausibility of a labelling by determin-
ing how many of these assumptions must be relaxed (and how many times). For
example, consider a drawing and two labellings L1 and L2, such that L1 requires
that two vertices be tetrahedral and L2 requires that one pair of parallel lines
in the drawing not be actually parallel in 3D. Should we prefer L1 to L2 or
vice-versa, or should we accept both as plausible interpretations?

Different applications may give rise to different answers to this and similar
questions. For example, if a line drawing has been derived from a human-
entered drawing, then the user may have explicitly specified that certain lines
are projections of parallel lines in 3D (but this is not assumed in this book), or
knowledge of the application area may imply that tetrahedral vertices are quite
common. In all cases, recent work on reduction operations on valued constraint
satisfaction problems may be applied to mitigate the theoretical intractability of
the resulting optimization problem (reduction operations for valued constraints
are described in detail in Chapter 8). Valued constraints are local cost functions
which allow us to express preferences between legal labellings and also to mark
other labellings as illegal by assigning them an infinite cost [140].

In later sections we study non-local soft constraints based on a natural ten-
dency to minimize the number of distinct surface orientations in the interpre-
tation of man-made objects. But first we begin by studying non-local hard
constraints. It is well known that junction constraints alone are not sufficient
to ensure realizability [154], and several workers have stated constraints on the
labelling of sets of lines not meeting at a junction [77, 90]. In the next section,
we formalize constraints on the labelling of a set of lines intersected by a path
from line LA to LB, where either LA = LB or LA, LB are parallel. We empha-
size that these constraints assume planar surfaces. They may also be applied to
drawings of curved objects provided we have sufficient evidence that particular
regions are the projection of planar faces. For example, it may be reasonable to

26 CHAPTER 3. LABELING LINE DRAWINGS OF POLYHEDRA

(a)

�����

� �α�
� J

L2

L1

L3R

��

�

(b)

������

��L2

L1

L3

R1

R2

��

+/−

(c)

������

��L2

L1

L3
R1

R2

��

+/−

Figure 3.3: (a) The ParOcc constraint: this labelling is impossible if lines
L1, L2, L3 are adjacent to region R and lines L1, L2 are parallel; (b),(c) the
ParCon constraint: this labelling is impossible if lines L1, L3 are adjacent to
region R1, lines L2, L3 are adjacent to region R2, and lines L1, L2 are parallel
but are not parallel to L3.

assume that a surface which has a polygonal boundary is planar.

3.3 Parallel-Lines Constraint

In this section we assume that a line drawing is an orthographic projection of
the edges of opaque polyhedral objects from a general viewpoint. The general
viewpoint assumption (GVA) says that a small change in the position of the
viewpoint does not alter the configuration of the drawing (including junction
types and presence of parallel or collinear lines). The orthographic projection
and general-viewpoint conditions imply that parallel lines in the drawing are
projections of parallel lines in the 3D scene. If, as will usually be the case, we
mark lines as parallel if the angle between them is less than some threshold
ε (to take into account, for example, rounding errors or a projection which is
only approximately orthographic), then the constraints presented in this section
become soft rather than hard constraints. The coding of such soft constraints
is discussed in detail in Section 3.8.

Figure 3.3 shows combinations of labels that are physically impossible under
these assumptions. In all figures we use a generic label � to represent any of
the three labels + (convex), − (concave), → (occluding with the nearer object
below the line). Similarly � represents any of the labels +,−,←. Thus, for
example, the label� for line L1 in Figure 3.3(a) implies that the edge projecting
into L1 lies on the surface projecting into region R. Note that in the ParOcc
constraint (Figure 3.3(a)), α can be any angle. A line L is said to be adjacent
to a region R if L is part of the boundary of R when considered as a face in
the planar graph representation of the drawing. For example, in the ParOcc
constraint, L1, L2, L3 are all adjacent to the region R as shown in Figure 3.3(a).
Junction J in Figure 3.3(a) is any viewpoint-independent junction (such as a Y,
W or L, but not a T junction caused by a depth discontinuity). Let S1, S2, S3

3.3. PARALLEL-LINES CONSTRAINT 27

(a)

�
�

�

�
�

�

�
�

�

�
�

�
�

�
�

��

�
�

�
�

�
�

��

���������

−

+

+L2

L1

L′
2

L3

J

(b)

�
�

�

�
�

�

�
�

�

�
�

�
�

�
�

��

�
�

�
�

�
�

��

���������

��

+

+L2

L1

L′
2

L3

J

Figure 3.4: The trihedral labelling in (a) violates the ParCon constraint, whereas
the tetrahedral labelling in (b) does not

represent respectively the 3D lines in the scene which project into L1, L2, L3.
The labelling in Figure 3.3(a) implies that S1 and S2 are coplanar. Since S2, S3

intersect, they are also coplanar. Furthermore, since S1, S3 are parallel, they
are also coplanar. It follows that S1, S2, S3 all lie in the same plane, the face
projecting into region R, but this contradicts the occluding label for L2. A
reflected version of the configuration in Figure 3.3(a), with L3 to the right of
L2, is also physically impossible.

In the ParCon constraint (Figure 3.3(b)), the labellings shown are impossible
provided L1, L2 are parallel but not parallel to L3. The proof is omitted since
we prove a more general result below. Note that the parallel lines L1, L2 do not
necessarily face each other; for example, the configuration in Figure 3.3(c) gives
rise to the same constraint.

Figure 3.4 shows an example of the use of the ParCon constraint. Applying
the trihedral catalogue of Figure 3.2 and the outer-boundary constraint produces
a single legal labelling, which includes the four labels given in Figure 3.4(a).
However, this labelling violates the ParCon constraint both on L1, L2, L3 and
on L1, L

′
2, L3. Applying the tetrahedral catalogue [165] instead of the trihedral

catalogue produces an alternative labelling which includes the four labels shown
in Figure 3.4(b). This labelling, in which junction J is the projection of a
tetrahedral vertex, is consistent with the ParCon constraint.

We can generalize the ParOcc and ParCon constraints to a general constraint
which can be applied to any pair of parallel lines. Consider a labelled drawing
produced by orthographic projection. A path is a locus of points in the drawing
from a point on a line L1 to a point on a line L2. It may intersect any number
of intermediate lines between L1 and L2. A path Π is parallel if L1 and L2 are

28 CHAPTER 3. LABELING LINE DRAWINGS OF POLYHEDRA

�
�

�
�

�
�

Π

L

+

��

�
�
�

�
�

�
Π

L

−

��

Figure 3.5: The catalogue of strictly monotone intersections

parallel and the tangent to Π is parallel to L1 and L2 at each intersection of Π
with intermediate lines. In what follows we assume (by rotation of the drawing
if necessary) that L1 and L2 are horizontal. L1 may be above or below L2 in the
drawing and Π may approach intermediate lines L from the left or the right (but
always horizontally). Figure 3.5 shows two ways in which a path Π, shown as a
broken line, may intersect an intermediate line. The direction of Π is indicated
by an arrow.

An intersection between a parallel path Π and an intermediate line L is
known as strictly monotone if L is labelled as in one of the two configurations
given in Figure 3.5. The justification for this term is as follows. Imagine an
imaginary horizontal line segment HP in the plane of the drawing such that
HP intersects Π at a point P . Let SP be the 3D line segment which projects
into HP and which lies on the 3D planar surface visible at P . As P follows
the path Π in the drawing and intersects an intermediate line L, SP twists in
3D so that the depth zr of its right-hand end either increases or decreases. In
both cases shown in Figure 3.5, the depth zr strictly increases. The angle of
line L in Figure 3.5 is arbitrary, but L must be at an angle greater than ε to
the horizontal to avoid superstrictness problems (i.e. marking a legal labelling
as illegal due to rounding errors in the positions of junctions). Note that path
Π is shown as a straight line but may be any continuous curve provided that
the tangent to Π at its intersection with L is horizontal.

Figure 3.6 shows some ways in which a path may begin or end at the hor-
izontal lines L1, L2. The generic label � = {+,−,→} is as in Figure 3.3. J
represents any viewpoint-independent junction (i.e. not a T junction caused
by a depth discontinuity). In Figure 3.6(b),(d) any number of other lines can
meet at J , as shown. The angle between L′ and L1(L2) is arbitrary. No other
junction lies on L1(L2) between J and point P where Π intersects L1(L2).

A parallel path is called strictly monotone if

1. It contains only strictly monotone intersections,

2. It begins at a line L1 in one of the configurations shown in Figure 3.6(a)
or (b),

3. It ends at a line L2 in one of the configurations shown in Figure 3.6(c) or
(d),

3.3. PARALLEL-LINES CONSTRAINT 29

Π

L1

��

��

(a)

Π

L1

��

��

��

�
�

Π

L1

L′

J
 ##.

..

��

(b)

��

�
�

Π

L1

L′

J

��...

��

Π

L2

��

��

(c)

Π

L2 ��

�� ��

�
�

Π

L2

L′

J
��

...

��

(d)

��

�
�

Π

L2

L′

J ##
 .
..

��

Figure 3.6: (a),(b) How a strictly monotone path Π may begin; (c),(d) how a
strictly monotone path Π may end.

4. Either it contains at least one intersection or it begins with a configuration
in Figure 3.6(b) or it ends with a configuration in Figure 3.6(d).

It is clear that if the two parallel lines L1 and L2 are projections of parallel lines
in 3D, then there can be no strictly monotone path joining L1 and L2; otherwise
the line projecting into L2 would be twisted compared to the line projecting into
L1. The parallel-lines constraint simply says that no strictly monotone parallel
path exists in a labelled line drawing. It is easily seen that the ParOcc and
ParCon constraints are just special cases of the parallel-lines constraint.

Figure 3.7 shows an example of the use of the parallel-lines constraint. Even
assuming trihedral vertices and using the outer-boundary constraint, this draw-
ing still has four legal labellings. All but one of these labellings can be eliminated
by applying the parallel-lines constraint to the lines AB, EF with a path Π
passing by the intermediate lines BC, ED. The labelling in Figure 3.7(a) is an
example of a labelling that violates this constraint. Figure 3.7(b) is the only
legal labelling consistent with the parallel-lines constraint.

A strictly monotone path may begin and end at the same line, since a line is
necessarily parallel to itself. In this case, we do not need the assumption of an
orthographic projection. A strictly monotone path may contain no intermediate
lines provided it begins or ends in one of the configurations in Figure 3.6 (b),(d).
Figure 3.8 shows a constraint on the labelling of three consecutive lines on the
boundary of a region R. Any number of lines can meet at junctions A and B,
as shown, and the angles α, β are arbitrary. The labelling shown in Figure 3.8 is

30 CHAPTER 3. LABELING LINE DRAWINGS OF POLYHEDRA

illegal if junctions A, B are viewpoint-independent (i.e. not depth-discontinuity
T junctions), there are no other junctions between A and B, and the surface
projecting into region R is planar. This constraint is easily deduced from the
parallel-lines constraint with a strictly monotone path leaving line AB towards
the right and immediately returning to AB.

It is clear that when applying the parallel-lines constraint it is not necessary
to specify the actual locus of points traced by path Π: we identify Π with the
sequence of lines and regions it intersects. However, if the length t of a path
is defined as the number of lines it contains (including the beginning and end
lines), then the number of strictly monotone paths of length t is Θ(nt) in the
worst case where n is the number of lines in the drawing. Therefore, in practice,
we recommend limiting the use of the parallel-lines constraint to parallel paths
with, for example, at most two intermediate lines. When a line drawing contains
many parallel lines, we can often identify parallel planes. For example, a human
being sees at a glance that the object depicted in Figure 3.4 has three pairs of
parallel planar surfaces. If we know (from their labelling) that lines L1, L2 lie
on the planar surface projecting into region R, lines L′

1, L
′
2 lie on the planar

surface projecting into region R′, L1, L′
1 are parallel, L2, L′

2 are parallel, but
L1, L2 are not, then we can deduce that the surfaces projecting into R, R′

are parallel planes. In this case, we can extend the parallel-lines constraint as
follows. A strictly monotone path can jump from any point in the interior of R
to any point in the interior of R′, without affecting the validity of the parallel-
lines constraint. We call the resulting constraint the extended parallel-lines
constraint.

As a trial of the usefulness of the parallel-lines constraint, we examined the
labelled line drawings given in Varley and Martin’s paper to illustrate their cata-
logue of trihedral and tetrahedral junction labellings (Figures 4–9 and 24–166 of
[165]). Eliminating mirror-image versions of the same drawing produced a total
of 92 drawings. Nine of these drawings are such that if taken out of the con-
text of the paper (where several drawings from different viewpoints are given of
each different object), it would not necessarily be interpreted by a human being
as indicated by Varley and Martin [165]. These drawings were ignored, which
left us with 83 line drawings, containing an average of 14.8 lines each. Out of
these 83 drawings, 54 were correctly labelled by applying the outer-boundary
constraint (which simply imposes an occluding label on the external boundary
of the drawing) and preferring trihedral to tetrahedral labellings. For all the
remaining 29 drawings, applying the parallel-lines constraint or its extended
version was sufficient to make the correct labelling the unique optimal labelling.
In only three cases did we require the extended parallel-lines constraint. In all
29 cases, the number of intermediate lines in the parallel-lines constraint was
never greater than two. In the experimental trials described in this section, we
applied the parallel-lines constraint (coded as a hard constraint) to all parallel
paths in the drawing involving up to two intermediate lines.

In a second trial, we studied the same sample of 83 drawings but this time
without applying the outer-boundary constraint. If for each drawing we imag-
ine the same object this time depicted resting on a large flat surface, such as a

3.3. PARALLEL-LINES CONSTRAINT 31

(a)

A B

C

D

E F

��
��

��
��

���

�
�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�

�
�

�
�

�
�

�

�
�

�
�

�
�

�

�
�

�
�

�
�

�

��

+

−

−

−

−−
+

+ +

+ +

+
+

���� ����

����

����

��
��

(b)

���

�
�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�

�
�

�
�

�
�

�

�
�

�
�

�
�

�

�
�

�
�

�
�

�

��

−

+

+

����

��
��

−
+

+ +

+ +

+
+

���� ����

����

����

��
��

��
��

��
��

Figure 3.7: (a) A legal labelling according to the trihedral catalogue and the
outer-boundary constraint; (b) the unique and correct labelling found by also
applying the parallel-lines constraint and propagating

32 CHAPTER 3. LABELING LINE DRAWINGS OF POLYHEDRA

�
�

�
�

�

	
�

����

��
��

��

...

...

�
�

�	

A

B

α

β

R

Figure 3.8: This labelling is impossible by the parallel-lines constraint

tabletop, the human interpretation of the drawing does not change, even though
the outer-boundary constraint no longer applies. The resulting drawing is only
ambiguous for a human being in that we cannot determine whether the object is
actually touching the surface or not, and if so along which edges. Surprisingly,
the parallel-lines constraint, together with our preference for trihedral junction
labellings, was sufficient to identify as optimal exactly the interpretations cor-
responding to human intuition in all but one of the 83 drawings. Note that
the almost 100% success rate in imitating human intuition as to which is the
most likely interpretation of these drawings is no doubt due to the fact that
Varley and Martin used parallel lines as the main visual cue to avoid ambigu-
ity in their drawings. Other sets of drawings may require reasoning about, for
example, collinearity or symmetry.

In [38] we studied the interpretation of line drawings in which lines may
be missing due to contrast failure. If contrast failure is assumed to only oc-
cur between parallel surfaces, then the parallel-lines constraint is still valid
for strictly monotone paths Π beginning and ending at the configurations in
Figure 3.6(a) and (c). This follows from the fact that, even if path Π inter-
sects a missing occluding line, the 3D orientation of the occluding and occluded
surfaces are identical since these surfaces are assumed to be parallel [38].

In the following section we give a theoretical application, by showing how the
parallel-lines constraint can be used in the construction of a junction catalogue
for polyhedral vertices.

3.4 A Universal Constraint for Simple Junctions

In this section we derive a constraint on the labelling of a large class of junctions
when there is no limit on the number of surfaces which can meet at a vertex.

Definition 3.1 A simple junction J is any intersection of lines terminating at
J such that no two of these lines are collinear.

3.4. A UNIVERSAL CONSTRAINT FOR SIMPLE JUNCTIONS 33

�
�

�
�

�
�

�

�
�

�
�

�
�

�

�
�

�
�

�
�

�

�
�

�
�

�
�

�

�

	

�

����

Π . . .

. . .

LJ

Figure 3.9: A simple junction J .

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

. . .

. . .

LJ

−−

+ +

���� �
�

�
�

��

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

. . .

. . .

LJ

++

− −

����

Figure 3.10: The polyhedral-junction constraint: the labellings shown are illegal.

Figure 3.9 shows a simple junction J . For any line L terminating at J ,
we can apply the parallel-lines constraint to the path Π shown in Figure 3.9,
since L is parallel to itself. Note that, in this special case, we no longer require
the assumption of orthographic projection to apply the parallel-lines constraint.
In this section, therefore, we study the labelling of projections of polyhedral
vertices under only a general viewpoint assumption.

It is a direct consequence of the parallel-lines constraint that the labellings
shown in Figure 3.10 are illegal. Note that there may be any number m ≥ 0 of
lines arriving at J from above and any number n ≥ 0 of lines arriving at J from
below. The special case when L is the only line terminating at J is clearly also
illegal, although this is not a consequence of the parallel-lines constraint.

As an example of the use of the polyhedral-junction constraint, consider
the two labellings of a Multi junction in Figure 3.11. The polyhedral-junction
constraint tells us that the labelling of Figure 3.11(a) is illegal, whereas the
labelling of Figure 3.11 is legal (as will be proved below). The difference between
the two configurations is that deleting the concave line leaves a W junction in
Figure 3.11(a) and a Y junction in Figure 3.11(b). A (+,+,+) labelling is legal
for Y junctions but not for W junctions. Thus Figure 3.11 provides a refinement

34 CHAPTER 3. LABELING LINE DRAWINGS OF POLYHEDRA

(a)
�

�
�

�
��

�
�

�
�

��
++

−

+
(b)

�
�

�
�

��

�
�

�
�

��
++

+

−

Figure 3.11: The labelling (a) is illegal, but the labelling (b) is legal.

�
�

−
��

+
��

− �
�

+

�
�

��
�
�

��
�
�

��
�
�

��

���
���

+

++ ���
���

−
−−

���
���
−

++ ���
���

+

−−

Figure 3.12: Minimal legal polyhedral junction labellings

to the list of labellings for Multi junctions in the tetrahedral catalogue [165].
In fact, the rest of this section is devoted to showing that the constraint of

Figure 3.10 is the tightest possible constraint on labellings of simple junctions.

Definition 3.2 A labelled junction J1 is a sublabelling of a labelled junction
J2 if J1 can be obtained from J2 by deleting some number (possibly zero) of lines
from J2.

For example, a W junction labelled + − + has three L junction labellings,
namely +−,−+, ++, as sublabellings.

Figure 3.12 shows some legal polyhedral junction labellings of L, Y and W
junctions.

Lemma 3.3 All labellings of a simple junction J which are not illegal by the
polyhedral-junction constraint (Figure 3.10) contain one of the labelled junctions
in Figure 3.12 as a sublabelling.

Proof: Let J be a labelled junction which has none of the labelled junctions
in Figure 3.12 as sublabellings. We will show that J is illegal by the polyhedral-
junction constraint.

3.4. A UNIVERSAL CONSTRAINT FOR SIMPLE JUNCTIONS 35

�
�

�
�

�

�
β

A

B

+

−QB

QA

Qopp

�
�

�
�

Figure 3.13: Qopp contains either only + lines or only − lines, QA contains
only + lines and QB only − lines.

J cannot have two or more occluding labels, since this would imply that it
necessarily had as a sublabelling an L junction with two occluding labels, and all
such labellings of L junctions are listed in Figure 3.12. Suppose that J has just
one line A with an occluding label, and suppose that A is labelled with an arrow
pointing towards the junction (the proof for other case being entirely similar).
Since J has neither of the first two L junction labellings given in Figure 3.12 as
sublabellings, it must be of the form shown on the left of Figure 3.10 and hence
must be illegal.

If each line meeting at J is labelled +, then since J has no Y junction,
labelled + + +, as a sublabelling, there must be an angle α > π between two
adjacent lines. But then J is again illegal by the polyhedral-junction constraint.
A similar argument applies if all the lines meeting at J are labelled −.

The only case left to consider is when J has no occluding labels and at least
one + label and at least one − label. Let A and B be two lines meeting at J
such that A and B have different labels and such that the angle β between A
and B is minimal. Without loss of generality, suppose A is labelled + and B is
labelled −. This situation is illustrated in Figure 3.13. The extensions of lines
A and B divide the plane into four quadrants as shown in Figure 3.13. In Qopp

there cannot be two lines with different labels; if not this would contradict the
minimality of β. In QA there can be no line labelled −, otherwise J would have
the W junction labelling − + − as a sublabelling. Similarly, in QB there can
be no line labelled +, otherwise J would have the W junction labelling +− +
as a sublabelling. The labelling of J is then illegal by the polyhedral-junction
constraint (with L = A if Qopp contains only + labels and with L = B if Qopp

contains only − labels).

Lemma 3.4 Let J be a labelled simple junction. If J has a legal polyhedral-
junction labelling J0 as a sublabelling, then J is also a legal polyhedral-junction
labelling.

36 CHAPTER 3. LABELING LINE DRAWINGS OF POLYHEDRA

�
�

���
�

��

E1 E2

�������$
#######%

	
		&

�
��'

�
�

��

####����

�
�

��
− E

E1 E1 E1 E1E2 E2 E2 E2

�
�

��

����####

�
�

��
+
E �

�
��

����

�
�

��
����

E �
�

��

####

�
�

��
����
E

Figure 3.14: Introduction of a new edge E of any type within a surface bounded
by non-collinear edges E1, E2

Proof: Let J0 be a legal polyhedral labelling which is a sublabelling of J . Let
V0 be a vertex which projects into J0. Suppose that L is a line of J which does
not occur in J0. L must lie in some region R between adjacent lines L1, L2

meeting at J0. Let S be the surface which projects into R.
Consider first the case where S is one of the surfaces meeting at vertex V0 and

that S is bounded by 3D edges E1, E2 projecting into lines L1, L2. Partition S
into two distinct faces S1, S2 separated by a 3D line E which projects into line L.
Since E1, E2 are not collinear, by our assumption that J contains no collinear
lines, it is possible to rotate S1 about E1 and S2 about E2, by small angles
ε1, ε2, so that E becomes either a concave or a convex edge. By also creating a
hidden edge, it is possible, in a similar manner, to construct an occluding edge.
Figure 3.14 shows how it is possible to introduce a concave, convex or occluding
edge in a vertical surface. For sufficiently small ε1, ε2, the labelling of lines L1,
L2 of J0 remains unchanged. The cases in which one or both of E1, E2 occlude
surface S can be dealt with by entirely similar constructions.

By repeating this operation for each line L of J not in J0, we can clearly
construct a vertex V which projects into J .

The following theorem now follows immediately from Lemmas 3.3 and 3.4.

Theorem 3.5 Let J be a labelled simple junction. J is a legal polyhedral
junction labelling if and only if it satisfies the polyhedral-junction constraint
(Figure 3.10).

Huffman [77] characterized all legal labellings of simple polyhedral junctions
in terms of the possibility of finding in dual space a closed trace corresponding
to the junction. Theorem 3.5 provides a more explicit characterization.

The table in Figure 3.15 gives the number of labellings which are realizable
as projections of trihedral, tetrahedral or polyhedral vertices, for each junction

3.4. A UNIVERSAL CONSTRAINT FOR SIMPLE JUNCTIONS 37

Junction type

L

Y

W

T

Multi

Peak

K

ψ

X

()

��

)(

��
��
���� ����

��
��

��		

Trihedral

6

5

3

4

–

–

–

–

–

Tetrahedral

8

32

28

20

9

11

8

–

–

Polyhedral

8

52

52

24

240

240

139

94

48

Combinatorial

16

64

64

64

256

256

256

256

256

Figure 3.15: The number of labellings for junctions of arity up to four

type of arity up to four. The figures for trihedral vertices refer to the basic
Huffman–Clowes catalogue [20, 75]. The figures for tetrahedral vertices refer to
Varley and Martin’s catalogue [165]. The lists of legal polyhedral labellings for
L, Y, W, Multi and Peak junctions are easily obtained from Theorem 3.5. The
list of legal polyhedral T junction labellings can be found in [77], and the lists of
legal polyhedral labellings for K, Y and X junctions were obtained by exhaustive
search making ample use of the parallel-lines constraint (which incidently was
not quite sufficient on its own to eliminate all illegal labellings since two illegal
labellings for the ψ junction also satisfy the parallel-lines constraint).

The figures in the rightmost column are the number of combinatorially pos-
sible labellings. It is clear that the general polyhedral-junction constraints are
far too weak to obtain a unique labelling of a line drawing. Consider a catalogue
containing junction types belonging to a set C (e.g. C = {L,Y,W,T} in the tri-
hedral catalogue). Let N be the total number of line ends in the catalogue (e.g.
N = 2+3+3+3 for the trihedral catalogue). Assuming a uniform distribution
of junction types, a drawing with n lines contains on average 2n

N junctions of
each type in C. For each junction type t ∈ C, let pt be the ratio of the number of
legal labellings to the number of combinatorially possible labellings. Since each
line can have one of four labels, the average number of global legal labellings of
a drawing with n lines is thus

4n
∏

t∈C

p
2n
N
t .

We can therefore calculate that the average number of global legal labellings
of a drawing with n lines is Ω(1.49n) for the tetrahedral catalogue and Ω(2.8n)

38 CHAPTER 3. LABELING LINE DRAWINGS OF POLYHEDRA

for the polyhedral catalogue. This can be compared with the O(0.73n) average
number of legal labellings using the trihedral catalogue. These figures high-
light the need for new constraints involving small subsets of lines to reduce the
exponential number of global legal labellings. On the drawings tested, the outer-
boundary constraint and the parallel-lines constraint turned out to be the most
powerful such constraints. In the following sections we establish constraints on
the labellings of sets of lines intersected by a another form of path, based on
depths rather than orientations of surfaces.

3.5 Lines Sharing the Same Two Regions

In this section we do not need the assumption of orthographic projection, but
we assume that the drawing is a projection of a polyhedral scene from a general
viewpoint. In order to introduce a generic constraint on lines intersected by a
path in the drawing, we first study the special case of a pair of lines adjacent
to the same two regions. In a line drawing of a polyhedral scene, each line
separates two distinct regions of the drawing. The 2Reg constraint applies when
two non-collinear lines are adjacent to the same two regions. For example, in
both drawings in Figure 3.16, the region above line AB is the same as the region
below line CD and the region below line AB is the same as the region above
line CD. We represent this generic situation by the diagram in Figure 3.17(a),
where the straight lines L1, L2 labelled l1, l2 are lines present in the drawing
and the other lines are construction lines which simply indicate which side of
the lines share the same region in the drawing. This is, in fact, a very common
situation since it occurs at every L junction. There is a distinct and less common
case illustrated in Figure 3.17(b).

Figure 3.17 gives the list of legal labellings of the two lines in both cases.
Note that the angles between the two lines are arbitrary. For example, if the
two lines are parallel, this does not provide a stronger constraint. This 2Reg
constraint follows from simple reasoning about the depth of scene points. As
an example, consider the case in which l1 = +. It is clear that l1 = + (convex)
implies that a scene point just to the right of line L2 is nearer to the viewer
than a point just to the left of L2. This, in turn, implies that l2 =↑. An
important point is that we do not need an assumption of trihedral vertices to
obtain this constraint. This is, therefore, a very general constraint, from which
can be deduced, for example, the L junction constraint in the general polyhedral
catalogue. Indeed the list of eight labellings in Figure 3.17(a) coincides with the
list of eight legal L junction labellings given in Figure 3.12.

An illustration of the strength of the 2Reg constraint is that it can be used to
detect some classic examples of drawings of impossible polyhedral objects. For
example, both of the drawings in Figure 3.16 have legal labellings according to
the trihedral catalogue, but none of these labellings is consistent with the 2Reg
constraint. In all trihedral labellings, lines AB and CD have labels + and −,
respectively. But the +− labelling is illegal according to the 2Reg constraint.

A special case of the 2Reg constraint that needs to be considered separately

3.5. LINES SHARING THE SAME TWO REGIONS 39

�������
�������
��
��������

��

������

������

����

����

�������

��A
C

B

D

−

+

(a)

��������

��������

���� ��

��

��

������

������������

��������

����

��
������

����

����������

A

C B

D

+

−

(b)

Figure 3.16: Two impossible pictures of polyhedral objects, both detected by
the 2Reg constraint ((b) is known as Sugihara’s box [155])

�

�

�

l1 l2

(a)

l1l2 ∈ {−↓,+↑, ↑−, ↓+, ↓↓, ↓↑, ↑↓, ↑↑}

�

�

�

l1

l2

(b)

l1l2 ∈ {−↑,+↓, ↓−, ↑+, ↓↓, ↓↑, ↑↓, ↑↑}

Figure 3.17: The 2Reg constraint

40 CHAPTER 3. LABELING LINE DRAWINGS OF POLYHEDRA

 �

� �

l1 l2

(a)

l1 = l2

��

��
� �

l1 l2

(b)

l1l2 ∈ {−+,+−,←→,→←}

Figure 3.18: The Col2Reg constraint

� �

l1 l2

(a)

l1l2 ∈ {←←,++,+−,+→,−+,
−−,− →,→ +,→ −,→→}

�

��

l1 l2

(b)

l1l2 ∈ {→←,++,+−,+→,−+,
−−,− →,← +,← −,←→}

Figure 3.19: the Col1Reg constraint

occurs when the two lines are collinear. In this case, the lists of legal labellings
are given in Figure 3.18. These lists are completely different from those for the
2Reg constraint (Figure 3.17). This new constraint, which we call Col2Reg, was
derived using the GVA, which implies that collinear lines in the drawing are
projections of collinear lines in the 3D scene.

When two lines share only one common region, then without any other
information we can deduce nothing about the possible labellings of the lines.
However, in the case that the two lines are collinear, this gives rise to a constraint
which we call the Col1Reg constraint. The lists of legal labellings are given in
Figure 3.19.

To illustrate the utility of the Col2Reg and Col1Reg constraints, consider
the example line drawing in Figure 3.20. After applying the trihedral catalogue
and the outer-boundary constraint, seven of the line labels are still ambiguous.
However, by applying the Col2Reg constraint to the pair of collinear lines (AB,
CD) and the Col1Reg constraint to the pairs of collinear lines (EF , GH) and
(IJ ,HK), a unique labelling is determined after propagation. For example, the
fact that the line AB is labelled as convex (+) implies immediately by Col2Reg
(case (b) of Figure 3.18) that line CD is concave (−) rather than occluding
(→). Similarly, the concave label (−) for line EF implies by Col1Reg (case (a)

3.6. CYCLIC-PATH CONSTRAINT 41

A

B

C

D

E

F

G

H

I

J

K

?

? ?

??

?

?

��

��

��

�� ��

��

����

������

������ ����

����

����������������

����������������

����

����

����
������

������������

���

����

����������

��������
��

��

����
�����

����������������

��

Figure 3.20: A line drawing which has seven ambiguous labels (marked with a
question mark) after applying the trihedral catalogue and the outer-boundary
constraint, but which has a unique labelling after applying the Col1Reg and
Col2Reg constraints

of Figure 3.19) that line GH cannot be labelled as ←.
Kirousis [90] gave a constraint for L-chains (sequences of lines connected by

L junctions) in drawings of objects with trihedral vertices. Stated succinctly, the
L-chain constraint says that a + or − label for a line on an L-chain C uniquely
determines the labelling of all lines on C and that an occluding label for a line
on C reduces the number of possible labels for all other lines to at most three.
This constraint is a direct consequence of the 2Reg and Col2Reg constraints. It
therefore follows that the L-chain constraint also holds for drawings of objects
with non-trihedral vertices.

3.6 Cyclic-Path Constraint

In Figure 3.17(a),(b) it was necessary to make explicit a cyclic path intersecting
the two lines since the constraint is not identical for the two distinct cases shown
in Figure 3.17. Furthermore, a completely different constraint is obtained when
the lines are collinear (Figure 3.18). The 2Reg and Col2Reg constraints can be
generalized to the case of a path passing through n > 2 lines. Since, even for
n = 3 we identified 95 distinct cases, we prefer to give a generic constraint valid
for all cases and all values of n. The resulting cyclic-path constraint, given below,
was inspired by but also strictly generalizes Huffman’s cut-set rule based on
reasoning in dual space [77]. Our rule allows for paths of arbitrary shape which

42 CHAPTER 3. LABELING LINE DRAWINGS OF POLYHEDRA

��������•
Q

Π

(a)

+

L

�� ��������

•
QΠ

(b)

−
L

�� ������ �
�

�•
Q

Π

(c)

+/−

L

��

Figure 3.21: (a),(b) The two types of strictly positive intersections; (c) a null
intersection.

�� • •
QP1

Π

(a)

L0

��
�
	 •

Q = P2

Π

(b)
L0

��

•
Q

•
P2

Π

(c)
L0

��

��

*
*

*
**

�
�

�
�

����
....

...

. Q = P2•

Π

(d)

��

Figure 3.22: (a) How strictly positive cyclic paths begin; (b)–(d) how strictly
positive cyclic paths end.

do not necessarily begin and end at the same point, and we correct Huffman’s
treatment of intersections with occluding lines. It can be considered as an
application of Draper’s sidedness reasoning [59] along a path in the drawing.

A cyclic path is a path in a drawing which begins at a point P1 on line L0 and
ends at a point P2 on L0. It is anchored at a point Q collinear with L0. Any two
or three of the points P1, P2 and Q may, and often do, coincide. Suppose that
a cyclic path passes through regions R1, . . . , Rt which are projections of planar
surfaces S1, . . . , St, and let z1, . . . , zt denote the 3D depths of these surfaces at
a point which projects into Q in the drawing. Then a labelling is clearly illegal
if it implies z1 ≤ z2 ≤ . . . ≤ zt ≤ z1 with at least one of the inequalities being
strict.

We define the intersection of a path Π with a line L, separating regions Ri

and Ri+1, to be strictly positive if the labelling of L implies that zi < zi+1. This
is the case for the intersections in Figure 3.21(a),(b), in which Q lies on the
same side of L as Ri (respectively Ri+1) if L is labelled + (−). An intersection

3.6. CYCLIC-PATH CONSTRAINT 43

is said to be null if the labelling of L implies zi = zi+1. This is the case for
the intersection shown in Figure 3.21(c), where Q is collinear with L and L is
labelled either convex or concave. A cyclic path Π is strictly positive if

1. Π contains only strictly positive or null intersections,

2. Π begins as shown in Figure 3.22(a),

3. Π ends as shown in Figure 3.22(b),(c) or (d),

4. Either Π ends as in Figure 3.22(b) and Q does not coincide with a junction
or Π contains at least one strictly positive intersection.

In the configuration of Figure 3.22(b), if the point Q does not coincide with a
junction, then the occluding label implies a strict depth inequality between the
two surfaces atQ (z1<zt). In the configurations illustrated in Figure 3.22(a),(c),
Q may lie either to the left or right of P1 or P2. In Figure 3.22(d), path Π may
arrive from any angle. Whatever the angle, the surface St projecting into region
Rt through which Π arrives at P2 = Q either intersects or passes behind the
vertex projecting into Q, implying z1 ≤ zt.

The cyclic-path constraint simply says that a strictly positive cyclic path is
illegal since a net increase in depth as we traverse a cycle of surfaces is physically
impossible. To avoid superstrictness problems, we could classify an intersection
as strictly positive only if the perpendicular distance between the anchor point
Q and the extension of L exceeds some minimum value δ. Furthermore, we
could choose to only allow the cases in Figure 3.21(c) or Figure 3.22(a),(c) in
which the anchor point Q actually lies on line L or L0 (respectively), to avoid
superstrictness problems due to accidental collinearity ofQ with these lines. The
2Reg and Col1Reg constraints are just special cases obtained by studying cyclic
paths containing either one or zero intermediate lines. The Col2Reg constraint
can be obtained from the cyclic-path constraint and the parallel-lines constraint
(applied to an imaginary line lying anywhere on a surface but not parallel to
the lines in the drawing).

A path is not specified by an actual locus of points, but rather by the se-
quence of regions and lines it intersects. For any given cyclic path intersecting
lines L0, . . . , Lt−1, we do not need to test the cyclic-path constraint for every
point Q collinear with L0. Imagine the extension of L0 divided into t segments
by its intersection with the extensions of lines L1, . . . , Lt−1. It suffices to test
the constraint for 2t − 1 points Q, one per segment, together with each of the
t − 1 intersection points. As with the parallel-lines constraint, we recommend
applying the cyclic-path constraint only to cyclic paths involving only a small
number of lines, since in the worst case there are Θ(nt) cyclic paths of length t
in a drawing containing n lines.

It is important to note that the cyclic-path constraint does not require an
orthographic projection and is hence more generally applicable than the parallel-
lines constraint. Applied to our sample of drawings from [165], we found that
the cyclic-path constraint invalidated a subset of the labellings invalidated by
the parallel-lines constraint (where both constraints were applied to all paths

44 CHAPTER 3. LABELING LINE DRAWINGS OF POLYHEDRA

����

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�
�

�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
��

A

B

C

D

E F

G H

I J

K

L

M

N

O

S T

Q •

−
+

−

−
++

+

�
�

��	

R0

R1

R2 R3

R4

R5

R6

Figure 3.23: Three examples of applications of the cyclic-path constraint

involving up to two intermediate lines). As a concrete example, the polyhedral-
junction constraint can easily be deduced from the cyclic-path constraint, in-
stead of the parallel-lines constraint. Nevertheless the cyclic-path constraint and
parallel-lines constraint often complement each other. As an illustration of the
strength of the cyclic-path constraint, consider the drawing in Figure 3.23. The
labels shown are consistent with the trihedral catalogue, the outer-boundary
constraint and the parallel-lines constraint. However, a cyclic path passing
through regions R1, R2, R0 and intersecting lines AB, CD and EF invalidates
the labelling (−,+,−) for (AB, CD, EF) if we choose the anchor point Q as
shown. Similarly, a cyclic path passing through regions R3, R4, R0 and inter-
secting lines GH , IJ , KL invalidates the labelling (→,+,+) for (GH , IJ , KL)
if the anchor point is chosen to be any point on GH . A more subtle example is
the labelling (←,+,−) for (LM , NO, ST) invalidated by a cyclic path passing
through regions R5, R6, R0, intersecting lines LM , NO, ST and anchored at
any point of LM .

3.7 Parallel Junctions on Distinct Faces

The constraints described in this section express a preference for a small number
of distinct orientations of 3D edges in the scene reconstructed from the drawing.
We do not assume planar faces, and these preference constraints can thus be
applied even when surfaces are curved. In this case, the straight lines depicted

3.7. PARALLEL JUNCTIONS ON DISTINCT FACES 45

in the figures in this section represent tangents to the curved lines which meet
at a junction. All the constraints on junction pairs given in this section are only
valid if the total number of distinct orientations of 3D edges meeting at the
corresponding pair of vertices is equal to three. Thus these constraints certainly
hold if we can assume that all faces in the scene are parallel to one of only three
planes. In general, this is too strong an assumption and hence these constraints
simply express a preference for 3D interpretations involving pairs of trihedral
vertices V1, V2 such that each of the planes meeting at V1 is parallel to one of the
planes meeting at V2. Such interpretations are more likely in the case of man-
made objects, which tend to have many parallel planes, by a simple application
of Bayes’s theorem.

Before giving our constraints on parallel junction pairs (pairs of junctions
involving at least one pair of parallel lines), we reproduce in Figure 3.24 the
Huffman–Clowes (trihedral) catalogue of legal labellings of L, Y and W junc-
tions. We follow Parodi and Torre [127] in dividing the set of labellings for Y
and W junctions into subcategories Y(+), Y(−) and W(+), W(−). For exam-
ple, a Y(+) junction is the projection of a convex vertex whereas a Y(−) is the
projection of a concave vertex or a saddle point. Knowledge of the positions
of the vanishing points of all lines (under perspective projection) is sufficient
to classify Y and W junctions as + or − [127]. For notational convenience,
we also divide the six labellings of L junctions into four subcategories (called
L1(+), L1(−), L2(+), L2(−)) as shown in Figure 3.24. Let V be a trihedral ver-
tex projecting into an L junction J . One of the edges meeting at V is not
visible in the drawing. Let H denote the projection in the drawing of this
hidden edge. When extended, the two visible lines meeting at J divide the
plane of the drawing into four quadrants. For each of the four subcategories
L1(+), L1(−), L2(+), L2(−), the hidden line H lies in a different quadrant. In
the Huffman–Clowes catalogue, the set of legal labellings for an L junction is
simply the union of the sets of legal labellings for L1(+), L1(−), L2(+), L2(−)
junctions.

Consider any pair of junctions J1, J2 in the drawing. Suppose that the two
vertices V1, V2 projecting into these junctions are both trihedral and, further-
more, that each of the three edges meeting at V1 is parallel to one of the edges
meeting at V2. Then the list of possible labellings of J1, J2 is given by the ta-
ble of possible junction-types in Figure 3.25 (if J1, J2 are Y or W junctions),
Figure 3.26 (if J1 is a Y or W junction and J2 is an L junction) or Figure 3.27
(if J1, J2 are both L junctions). We call the corresponding constraint the Par3-
3, Par3-2 or Par2-2 constraint, according to the number of lines meeting at
junctions J1 and J2. For example, assuming trihedral vertices and that parallel
lines are projections of parallel 3D lines, the pair of Y junctions at the top of
the left hand column of Figure 3.25 must be the same sign (i.e. Y(+)Y(+) or
Y(−)Y(−)). As another example, the sixth configuration of pairs of L junc-
tions given in Figure 3.27 has only two legal labellings which involve only three
distinct face orientations. The constraints in Figures 3.25-3.27 were derived
by exhaustive search over all possible types of vertex pairs formed by parallel
planes, making use of the catalogue of labelled trihedral junctions in wireframe

46 CHAPTER 3. LABELING LINE DRAWINGS OF POLYHEDRA

L1(+)
�

�
�

�
�

� +

L1(−)
�

�
�

�
�

� +

L2(+)
�

�
�

�
�

�

L2(−)
�

�
�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

� −−

Y (+)

�
�

�
	

	
	

+

++

Y (−)

�
�

�
�

�
�

�
�

�
�

�
�

	
	

	
	

	
	

	
	

	
	

	
	

− −
− −− −

� �� �

W (+)
�

�
�

�
�

�
	

	
	

	
	

	
+ +

−−
W (−)

�
�

�
	

	
	

−

++

Figure 3.24: The catalogue of labelled L, Y and W junctions which are projec-
tions of trihedral vertices.

3.7. PARALLEL JUNCTIONS ON DISTINCT FACES 47

same sign opposite sign

�� ��

�� ��

�� ��

�� ��

��
��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

��
��

�� ��

�� ��

�� ��

Figure 3.25: The Par3-3 constraint: pairs of junctions in the left-hand column
are of the same sign; pairs of junctions in the right-hand column are of opposite
signs

48 CHAPTER 3. LABELING LINE DRAWINGS OF POLYHEDRA

same sign opposite sign

L2

L1

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

����

��

��

��

��

��

����

��

��

��

��

��

��

����

��

��

��

��

��

��

����

��

��

��

��

��

��

����

Figure 3.26: The Par3-2 constraint: pairs of junctions in the left-hand column
are of the same sign; pairs of junctions in the right-hand column are of opposite
signs; L junctions in the top half of the figure are L2 junctions; L junctions in
the bottom half of the figure are L1 junctions.

3.7. PARALLEL JUNCTIONS ON DISTINCT FACES 49

L2(+)L1(−), L2(−)L1(+)

L2(+)L1(−), L2(−)L1(+)

L2(+)L1(+), L2(−)L1(−)

L2(+)L1(+), L2(−)L1(−)

L1(+)L1(−), L1(−)L1(+)

L1(+)L1(+), L1(−)L1(−)

L2(+)L2(−), L2(−)L2(+)

L2(+)L2(+), L2(−)L2(−)

L2(+)L1(+), L2(−)L1(−), L1(−)L2(+), L1(+)L2(−)

L2(+)L2(−), L2(−)L2(+), L1(+)L1(−), L1(−)L1(+)

L2(+)L2(+), L2(−)L2(−), L1(+)L1(+), L1(−)L1(−)

+
+

+
+

+
+

+
+

,
,

,
,

,
,

,
,

+
+

+
+

,
,

,
,

�� ��

�� �
�

�
�

��

�� �
�

�
�

��

��

##

##
##

�� ��

Figure 3.27: The Par2-2 constraint: for each pair of L junctions shown on the
left, the possible junction types are shown on the right.

50 CHAPTER 3. LABELING LINE DRAWINGS OF POLYHEDRA

(a)
A B

C

D E

F
G H

I

(
(

(
(

()
)

)
)

)

(
(

(
(

()
)

)
)

)
(

(
)

) (b)
A

G(
(

(
(

(

(
(

(
((

(
(

�

��

�

Figure 3.28: (a) A line drawing which has eight legal labellings according to
the trihedral catalogue and the outer-boundary constraint but has only one la-
belling satisfying the Par3-2 constraint; (b) a line drawing which can be uniquely
labelled using the Par2-2 constraint.

projections [42].
Consider the drawing in Figure 3.28(a). The trihedral catalogue and the

outer-boundary constraint imply the unique labelling of some lines, but triangle
ABC remains very ambiguous. Indeed, triangle ABC has eight legal labellings.
Note that ParOcc eliminates three of these eight labellings, but this still leaves
five physically possible labellings. Par3-2 applied to the pair of junctions (D,A)
indicates that A is an L1(+) junction, which implies a unique labelling for the
whole drawing, corresponding to the most natural interpretation. Note that
applying Par3-2 to any of the junction pairs (B,E), (C,F), (C, I) or Par2-
2 to either of the junction pairs (G,A), (B,H) also implies the same unique
and correct interpretation of the drawing. Therefore, Par3-2 and Par2-2 would
allow us to interpret correctly triangle ABC even if all but one of the junctions
D,E, F,G,H, I were occluded in the drawing. Figure 3.28(b) shows such an
example.

The encoding of the Par3-3, Par3-2 and Par2-2 constraints as valued con-
straints is discussed in detail in Section 3.8.

3.8 Encoding of Soft Constraints

In a Valued Constraint Satisfaction Problem (VCSP), a valued constraint is
represented by a local cost function and the aim is to minimize the sum of these
cost functions [50, 140]. State-of-the-art VCSP solvers [53] maintain a form of
soft arc consistency (such as FDAC or VAC) during branch-and-bound search
and use appropriate variable/value ordering heuristics [98]. For example, FDAC
propagates hard constraints (represented by infinite costs) in all directions and
propagates finite costs towards earlier variables in the instantiation order so as
to produce a better lower bound with which to prune the search tree. This

3.8. ENCODING OF SOFT CONSTRAINTS 51

chapter is concerned uniquely with hard and soft constraints and their encoding
as a VCSP; algorithmic aspects of VCSPs are treated in Chapter 8.

For a given optimization problem, many different encodings are possible
as a VCSP. We say that the encoding of a line drawing labelling problem is
faithful if the set of optimal solutions to the VCSP coincide with the most likely
interpretations. A simple, but naive, encoding associates a fixed cost to the
violation of each soft constraint. Consider a pair of parallel lines, involved in a
large number m of parallel-lines or parallel-junctions (Par3-3, Par3-2 or Par2-2)
constraints. It is possible, by a single violation of the GVA, that these two lines
are in fact projections of 3D edges with two distinct 3D orientations, meaning
that thesem constraints are invalid. The naive encoding is therefore not faithful,
since the likelihood that the GVA is violated is independent of m.

A more faithful encoding is obtained by the introduction of auxiliary vari-
ables, which of course has the drawback of increasing the size of the search
space. For example, we can introduce a variable parS for each set S of parallel
lines in the drawing (parS being true iff all lines in S are projections of parallel
3D edges). Then each parallel-lines constraint along a parallel path Π beginning
and ending at lines in S can be encoded as a hard conditional constraint of the
form

parS ⇒ (the parallel-lines constraint is satisfied by the lines on Π).

An assignment parS = false incurs a fixed finite penalty corresponding to the
violation of the GVA.

In the case of imperfect line drawings, such as those derived from freehand
sketches, we can obtain an optimal partitioning of 2D lines into sets S1, . . . , Sr

of near-parallel lines, by using, for example, a linear-time optimal segmentation
algorithm applied to the sorted array of their angles [35]. An auxiliary boolean
variable parSi would be required for each Si containing at least two distinct
lines involved in at least one parallel-lines or parallel-junctions constraint.

A Par3-3 constraint between J and J ′ can be simply encoded as a hard
conditional constraint of the form

parSp ∧ parSq ∧ parSr ⇒ (the Par3-3 constraint is satisfied on J ,J ′),

where the lines meeting at junctions J and J ′ belong to the sets of parallel
lines Sp,Sq,Sr. In the case of Par3-2 constraints, the corresponding conditional
constraint is a soft constraint, since even if the two visible lines are projections
of parallel 3D edges, we are merely expressing a preference for vertices in which
the hidden third edge is parallel to the visible third edge. In other words, the
constraint

parSp ∧ parSq ∧ parSr ⇒ (the Par3-2 constraint is satisfied on J ,L)

can be violated with a fixed finite cost chosen as a function of the likelihood
that the hidden third edge is parallel to the visible third edge. (As above, the
lines meeting at J belong to the sets Sp,Sq,Sr.) The encoding of the Par2-2
constraint is entirely similar.

52 CHAPTER 3. LABELING LINE DRAWINGS OF POLYHEDRA

Alternative, more faithful, encodings exist at the cost of the introduction of
more auxiliary variables. For example, we could introduce an auxiliary variable
VL with domain {0, . . . , r}, for each L junction L, where VL = i if the hidden
third line is parallel to the lines in Si and VL = 0 if this hidden line is parallel to
no other visible lines in the drawing. In other words, we attempt to explicitly
reconstruct the directions of hidden lines.

3.9 Non-Manifold Scenes

We have assumed throughout this chapter that objects are 3D manifolds with
a 2D manifold surface. Some workers have studied the case of non-manifold
objects. In particular, the set of scenes containing objects which may be either
solid or wafer-thin is often known as the origami world. Since the origami
world allows many more vertices, such as those formed by cutting or folding a
sheet of paper, the semantic labelling constraints for origami world objects are
generally considered to be weaker than the equivalent constraints for manifold
objects [87, 125]. However, this is under the assumption that wafer-thin and
solid occluding edges are assigned the same label. Introducing a new label
for a wafer-thin occluding edge produces a more informative labelling scheme,
provided that transitions from wafer-thin edges to solid edges cannot occur (or
are unlikely, in a soft constraint formulation of the labelling problem).

When more than one manifold object can occur in a scene, the union of the
objects may not be manifold. This occurs, for example, when the edge of one
polyhedral object touches a face of another polyhedral object. The resulting
edge has the properties of a concave edge as far as depth reasoning or casting
of shadows is concerned but has the properties of an occluding edge as far as
junction labellings are concerned. One solution to this dilemma is to introduce
a new label → −, as suggested in [37, 38]. Waltz [173] also introduced new
labels for cracks, that is 3D lines along which two object edges meet.

3.10 Discussion

In this chapter we have presented constraints for the labelling of line drawings
of polyhedral scenes. The resulting constraints are necessary but not sufficient
conditions for physical realizability. The aim of the research presented in this
chapter is to identify low-arity hard or soft constraints which can be applied
before or during the search for an optimal interpretation. We consider such
constraints to be essential for any practical line drawing interpretation system
which is not restricted to objects with trihedral vertices. Indeed, based on
junction constraints alone, we have seen that the number of legal labellings
would be an exponential function of the size of the drawing.

We have chosen to restrict our attention to constraints on lines intersected
by a path as well as constraints derived from the presence of parallel or collinear
lines. Many other constraints exist. Examples include constraints derived from

3.10. DISCUSSION 53

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

����

����������������

����������

�
A

B

C

D
E

F

G

H +

− −

Figure 3.29: An example of a physically unrealizable labelled drawing of a
polyhedral scene that is not detected by our constraints.

the presence of lines collinear with junctions [38], collinear lines [103], skew
symmetry [132], vanishing points [127] and cubic corners [29, 166] (studied in
depth in the following chapter). Furthermore, we have only studied low-arity
constraints, and thus our constraints are necessarily incomplete even in the
treatment of parallel and collinear lines. For example, the labelled drawing
in Figure 3.29 is physically unrealizable, although it satisfies all the constraints
given in this chapter. Physically unrealizability is a consequence of the following
argument. From the labelling and the presence of parallel lines, we can deduce
that GACE and DFH lie on two parallel planes. But then, since AB is parallel
to CD, it follows that B should not be visible since it must lie behind the plane
DFH . We can thus deduce an arity-4 constraint based on the presence of three
pairs of parallel lines. It is, of course, debatable whether constraints based on
the presence of several pairs of parallel lines will be sufficiently robust to be
worth applying in practical applications.

Chapter 4

Discrete Inflation Using
Cubic Corners

Although a line drawing usually represents a whole family of three-dimensional
objects, human beings manage to communicate using this highly ambiguous
medium. We postulate that communication is possible due to the universality
of criteria used to determine the most likely interpretation. In this chapter,
we study in particular the preference for cubic corners in interpretations of line
drawings of polyhedra.

We introduce a simple boolean labelling scheme for line drawings of polyhe-
dra under orthographic projection. For each 3D edge AB, we assign a direction
to the projection of AB to indicate whether point A or point B is nearer to the
viewer. Although incomplete, such depth information is sufficient to automati-
cally detect certain classes of impossible figures. This simple labelling scheme,
combined with the maximization of the number of cubic corners, correctly finds
the complete frontal geometry for many line drawings. We envisage a direct
application of this scheme in software to automatically add 3D information to
line drawings.

From an algorithmic point of view, the novelty of this approach is to perform
optimization over finite domains which opens the possibility of a complete search
for an optimal interpretation.

4.1 Computer-Enhanced Perception

Machine vision is often considered as an alternative to human vision. It is rarely
considered as a means of enhancing human vision. We consider the interpreta-
tion of line drawings as an exemplary application area for computer-enhanced
perception.

We present a line labelling scheme (which extends the traditional Huffman–
Clowes labelling scheme) together with soft constraints expressing preferences
for vertices at which three planar faces meet at right angles (known as cubic

55

56 CHAPTER 4. DISCRETE INFLATION USING CUBIC CORNERS

corners). The resulting labelled line drawing often contains sufficient depth
information for a computer to shade the surfaces of polyhedral objects according
to their depth and/or orientation, or alternatively to add false depth contours,
thus providing a pseudo-3D representation of the depicted object. This labelling
scheme could therefore be used in an interactive drawing aid to automatically
enhance drawings by adding depth information.

The depth-labelling scheme is based on the preponderance of parallel lines
and cubic corners in man-made objects. Burns [17] emphasizes the importance
of parallel lines and cubic corners in human visual processing. Varley and Martin
[166] found parallel lines and cubic corners to be effective visual cues for deter-
mining the relative depth of adjacent vertices on experimental trials of their
machine vision system on a sample of 479 semantically labelled line drawings.

4.2 Machine Interpretation of Line Drawings

Human interpretation of drawings of man-made objects is no doubt so effective
because of the huge quantity of visual experiences which have been absorbed
and summarized in the form of a multitude of unconscious rules and prefer-
ences. Machine vision systems, on the other hand, generally use a small number
of rules, optimized mathematical algorithms and fast microprocessors to solve
specific well-defined problems. Two classic approaches in the computer inter-
pretation of line drawings of polyhedral scenes are

• The semantic labelling of lines (as occluding, convex or concave) subject
to a catalogue of legal junction labellings [75, 20]

• The determination of the equations of the planar object faces, given a
legal global labelling of the drawing, using linear programming [154, 155].

Semantic labels on their own provide an incomplete summary of the 3D scene
depicted in a drawing, whereas precise equations of faces provide rather more
information than necessary. In this chapter we are interested in sketches or il-
lustrative diagrams, possibly created within a word-processing program, rather
than technical drawings encountered, for example, in architecture or engineer-
ing. The latter are a formal specification of a 3D object, whereas the former do
not necessarily obey the strict rules of physical realizability imposed by the linear
programming approach. Furthermore, from a computational point of view, the
linear programming approach admits generalizations in which we impose extra
linear constraints (such as two parallel lines being projections of parallel lines
in 3D, or a vertex being a cubic corner [166]) but does not adapt easily to allow
us to express preferences between different physically possible interpretations.

We propose a knowledge-rich soft-constraint-based approach involving the
introduction of extra discrete variables (instead of real-valued parameters) and
extra soft constraints (representing preferences for more likely 3D shapes). Our
approach is close to that of Ding and Young [57], who used a truth-maintenance
system to apply both strict geometric constraints and heuristic rules based on

4.3. DEPTH LABELS 57

Gestalt principles (favouring interpretations involving parallelism, perpendic-
ularity and symmetry) for complete object reconstruction from a single line
drawing with missing lines.

Chapter 3 showed how constraints between distant lines complement the
traditional junction-labelling catalogues. Without such constraints, drawings of
objects with tetrahedral vertices [165] have, on average, an exponential number
of legal global labellings. We extend these constraints by giving extra soft con-
straints based on cubic corners, parallel edges and planes, using new labels to
represent edge orientation. This approach does not suffer from the superstrict-
ness of the linear programming approach [73, 155] (in which a small error in the
position of a junction can render a drawing unrealizable) and hence is no doubt
closer to human visual processing.

The traditional machine vision approach to finding the most likely interpre-
tation of a line drawing is to use some form of incomplete search to optimize
a real-valued objective function. This objective function is the sum of com-
pliance functions expressing preferences for likely object features such as right
angles, symmetry, isometry, verticality, coplanarity, collinearity and equal angles
[111, 147, 103, 166, 169]. We propose a finite-domain optimization formulation
of the problem of determining the relative depth of vertices, which allows us
to express both hard constraints (derived from geometrical reasoning) and soft
constraints (expressing preferences between different interpretations). Over fi-
nite domains we can perform a complete search. Furthermore, we can take
advantage of recently developed techniques for the simplification of soft con-
straint satisfaction problems [39, 41, 50, 98] (Chapter 8). These local reduction
operations on soft constraints generalize well-known classical discrete relaxation
algorithms [173, 55].

4.3 Depth Labels

Figure 3.24 gives the Huffman–Clowes catalogue of labelled junctions for pro-
jections of trihedral vertices. A global semantic labelling of a line drawing
provides important local 3D shape information, since each line is labelled as
occluding, convex or concave. This basic catalogue has been extended to allow
for much wider classes of drawings, involving objects with tetrahedral vertices
[165], lighting effects (shadows and contrast failure) [173, 38] and curved ob-
jects [109, 32, 34, 37]. In the case of curved objects and in the absence of any
other constraints (such as straight lines, collinearity, skew symmetry, etc.), the
junction catalogue provides a necessary and sufficient condition for realizability
of a drawing and can be tested in linear time [36]. In Figure 3.24 we divide
the set of possible labellings for each junction type into subtypes. The W(+),
W(-), Y(+) and Y(-) subtypes were first introduced by Parodi and Torre [127].
Under perspective projection, knowledge of vanishing points of all lines allows
us to identify all three-line junctions as W(+), W(-), Y(+) or Y(-), which again
leads to an efficient labelling algorithm [127]. The two lines which meet at an L
junction divide the drawing into four quadrants. The third hidden line can lie in

58 CHAPTER 4. DISCRETE INFLATION USING CUBIC CORNERS

any of these quadrants: the L1(+), L1(−), L2(+), L2(−) subtypes correspond
to these four cases.

However, it is possible to label lines with other information besides the se-
mantic labels of the Huffman–Clowes catalogue (occluding, convex, concave).
We propose a simple depth label: an arrow indicating the direction of increas-
ing depth. Assuming orthographic projection and that no 3D edges are per-
pendicular to the line of sight, each line in the drawing can be assigned an
increasing-depth direction. This will be indicated by a closed arrowhead, to
distinguish it from the occluding label represented by an open arrowhead.

Some combinations of semantic and depth labellings are physically impos-
sible. These are given in Figure 4.1(a). These strict constraints are extremely
weak. There are no physically impossible depth labellings of L1(+), L1(−),
L2(+) and L2(−) junctions. However, if we take into account the fact that
many man-made objects have cubic corners (vertices at which three orthogonal
planes meet), then we can impose a soft constraint translating a preference for
projections of cubic corners. Figure 4.1(b) lists the possible labellings of Y(+),
Y(-), W(+), W(-), L1(+), L1(−), L2(+) and L2(−) junctions which are pro-
jections of cubic corners. This is a very strong constraint, since in each case
the depth labelling is unique. The set of trihedral vertices can be extended to
include the vertices illustrated in Figure 4.2. Although there are more than
three faces meeting at vertices A and B, these faces lie in only three planes.
If these three planes meet orthogonally, then vertices A and B, together with
the mirror image of A, provide three new kinds of cubic corners. Figure 4.3
lists the labellings which have to be added to our catalogue of projections of
cubic corners. Note that the depth labelling (composed of the closed arrows) is
uniquely determined by the shape of the junction (i.e. the junction type plus
the identification of acute angles in the drawing).

Perkins [130] observed that only certain Y and W junctions can be projec-
tions of cubic corners (Figure 4.1). The most succinct statement of Perkins’s
rules is that when the three lines meeting at a Y or W junction J (a projection
of a cubic corner) are extended through J , then no three of the resulting six
half-lines lie within an angle of π

2 [103].
However, it is common to find anomalous combinations of angles in human-

produced drawings of objects with cubic corners. For example, in many of the
figures illustrating this chapter there are Y(+) junctions representing a cubic
corner in which one of the angles is a right angle, even though all angles should
be obtuse. We propose to tolerate such errors in drawings by expanding the
categories of acute and obtuse angles (in the catalogue of Figure 4.1) so that
they both include right angles (or even all angles in a small interval [π

2−ε, π
2 +ε]).

The two lines which meet at an L junction, when they are extended to
infinity, divide the plane into four quadrants. The semantic labelling of the
L junction determines in which quadrant the hidden line lies. Consider an
L junction orientated as in Figure 4.1. The hidden line H lies in the right
quadrant if the junction is of type L1(+), the left quadrant if it is of type
L1(−), the lower quadrant if it is of type L2(+) and the upper quadrant if it is
of type L2(−). In each case, the hidden edge slopes away from the viewer as it

4.3. DEPTH LABELS 59

(a)

(b)

Y (+)

�
�

�
	

	
	

��

��

Y (−)

�
�

�
	

	
	

��

��

W (+)
�

�
�

	
	

	
��

��

W (−)
�

�
�

	
	

	
��

��

Y (+)

�
�

�
	

	
	

��

�� ◦◦◦

Y (−)

�
�

�
	

	
	

��

��
◦◦◦

W (+)
�

�
�

	
	

	
��

�� ••
W (−)

�
�

�
	

	
	

��
�� ••

L1(+)
�

�
�

�
�

�
� �•

L1(−)
�

�
�

�
�

�
� �•

L2(+)
�

�
�

�
�

�
� �◦

L2(−)
�

�
�

�
�

�
� �◦

Figure 4.1: (a) Impossible depth labellings of projections of trihedral vertices.
(b) Possible depth labellings of projections of cubic corners: angles marked • are
acute and angles marked ◦ are obtuse; furthermore, the sum of the two acute
angles at a W junction is an obtuse angle (Perkins’s rules [130]).

������

���

���

���

���

������������

������

A

���

���

���

������������

���

���

���

������

������

������������������
B

Figure 4.2: Extended trihedral vertices.

60 CHAPTER 4. DISCRETE INFLATION USING CUBIC CORNERS

������

−

•

��

��

��--� ���
�� ������

−
•

+

��

��

��--�

�� ������

−•
+

��

��

..
���

��

������

−

•

��

��

..
���

..�
��

������������• •
+

−

��

��

��--� ..���..
����

������������������������• •
•

+

+ +−

− −

��

��

..
���

��
--�

��
--�

..
���

Figure 4.3: Labelings of cubic-corner extended trihedral vertices. Angles marked
• are acute and the sum of the two acute angles at a Ψ junction (bottom left) is
an obtuse angle.

4.4. DEPTH LABELS AND IMPOSSIBLE FIGURES 61

(a) (b) (c)

α

β γ

δ

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Figure 4.4: (a) An ambiguous figure: is it α and β which are right angles or γ
and δ (or none)? (b) In this object, α and β are seen as right angles. (c) In this
object, γ and δ are seen as right angles.

leaves the vertex, i.e. the depth label of H is an arrow pointing away from the
junction. Furthermore, the hidden line H together with the two visible lines
satisfy Perkins’s criterion.

Figure 4.4(a) is the projection of an infinite class of 3D objects. For example,
the 3D angle α could be any angle satisfying α < π. Nonetheless, there are three
preferred interpretations, one in which α and β are right angles, another in which
γ and δ are right angles and a third in which α = δ and β = γ. The drawings in
Figure 4.4(b),(c) each have a different single preferred interpretation, which is
consistent with the hypothesis that human interpretation maximizes the number
of cubic corners in the reconstructed object.

4.4 Depth Labels and Impossible Figures

As possible evidence of the psychological relevance of depth labels in the study
of human vision, consider the difference between the drawings in Figures 4.5 and
4.6. These are both examples of impossible figures which have legal semantic
labellings. Assuming all vertices are cubic corners, Figure 4.5 has a legal global
depth labelling whereas Figure 4.6 does not. Indeed, in Figure 4.6 every line
has opposite depth labels assigned to it by the junctions at its two ends. When
we observe Figure 4.5, we are aware of some form of physical impossibility, but
we nevertheless interpret each line as being sloped towards or away from the
viewer. This depth labelling is exactly the one found by applying the junction
catalogues (Figures 4.1 and 4.3). Figure 4.7 is a similar example based on
the Penrose triangle. Both drawings are examples of impossible figures which
have legal semantic labellings. Assuming that all vertices are cubic corners,
the drawing on the left has a consistent depth labelling, corresponding to the
impression of 3D shape we have when we observe this drawing (while at the
same time realizing that it is physically impossible). Again assuming that all

62 CHAPTER 4. DISCRETE INFLATION USING CUBIC CORNERS

������������
��

��
��

�
�

��
��
����

�
���
�
���

������������
��

��
��

�
�

��
��
����

�
���
�
���

������������
��

��
��

�
�

��
��
����

�
���
�
���

������������
��

��
��

�
�

��
��
����

�
���
�
���

������������
��

��
��

�
�

��
��
����

�
���
�
���

������������
��

��
��

�
�

��
��
����

�
���
�
���

������������
��

��
��

�
�

��
��
����

�
���
�
���

������������
��

��
��

�
�

��
��
����

�
���
�
���

������������
��

��
��

�
�

��
��
����

�
���
�
���

������������
��

��
��

�
�

��
��
����

�
���
�
���

������������
��

��
��

�
�

��
��
����

�
���
�
���

������������
��

��
��

�
�

��
��
����

�
���
�
���

������������
��

��
��

�
�

��
��
����

�
���
�

���

������������
��

��
��

�
�

��
��
����

�
���
�

���

������������
��

��
��

�
�

��
��
����

�
���
�

���

������������
��

��
��

�
�

��
��
����

�
���
�

���

������������
��

��
��

�
�

��
��

����

�
���
�

���

������������
��

��
��

�
�

��
��

����

�
���
�

���

������������
��

��
��

�
�

��
��

����

�
���
�

���

������������
��

��
��

�
�

��
��

����

�
���
�

���

������������
��

��
��

�
�

��
��

����

�
���
�

���

������������
��

��
��

�
�

��
��

����

�
���
�

���

������������
��

��
��

�
�

��
��

����

�
���
�

���

������������
��

��
��

�
�

��
��

����

�
���
�

���

Figure 4.5: A tiling of the plane based on an impossible figure. A consistent
depth labelling exists of the whole figure assuming each vertex is a cubic corner.

�����������
� ����
��

��

��
������

�
���
�
���

�����������
� ����
��

��

��
������

�
���
�
���

�����������
� ����
��

��

��
������

�
���
�
���

�����������
� ����
��

��

��
������

�
���
�
���

�����������
� ����
��

��

��
������

�
���
�

���
�����������

� ����
��
��

��
������

�
���
�

���

�����������
� ����
��

��

��
������

�
���
�
���

�����������
� ����
��

��

��
������

�
���
�
���

�����������
� ����
��

��

��
������

�
���
�
���

�����������
� ����
��

��

��
������

�
���
�
���

�����������
� ����
��

��

��
������

�
���
�

���
�����������

� ����
��
��

��
������

�
���
�

���

�����������
� ����
��
��

��
������

�
���
�

���
�����������

� ����
��
��

��
������

�
���
�

���
�����������

� ����
��
��

��
������

�
���
�

���
�����������

� ����
��
��

��
������

�
���
�

���
�����������

� ����
��
��

��
������

�
���
�
���

�����������
� ����
��

��

��
������

�
���
�
���

�����������
� ����
��
��

��
������

�
���
�

���
�����������

� ����
��
��

��
������

�
���
�

���
�����������

� ����
��
��

��
������

�
���
�

���
�����������

� ����
��
��

��
������

�
���
�

���
�����������

� ����
��
��

��
������

�
���
�
���

�����������
� ����
��

��

��
������

�
���
�
���

Figure 4.6: A tiling of the plane based on an impossible figure, in which every
line has contradictory depth-label cues assuming all vertices are cubic corners.

4.5. PROPAGATION OF DEPTH LABELS 63

�
��

�
����

�

�
�

���
�

��
�

����
�

�
�

���
�

��
�

����
�

�
�

���
�

��
�

����
�

�
�

���
�

��
�

����
�

�
�

���

�
��

�
����

�

�
�

���
�

��
�

����
�

�
�

���
�

��
�

����
�

�
�

���
�

��
�

����
�

�
�

���
�

��
�

����
�

�
�

���

�
��

�
����

�

�
�

���
�

��
�

����
�

�
�

���
�

��
�

����
�

�
�

���
�

��
�

����
�

�
�

���
�

��
�

����
�

�
�

���

�
��

�
����

�

�
�

���
�

��
�

����
�

�
�

���
�

��
�

����
�

�
�

���
�

��
�

����
�

�
�

���
�

��
�

����
�

�
�

���

�
��

�
����

�

�
�

���
�

��
�

����
�

�
�

���
�

��
�

����
�

�
�

���
�

��
�

����
�

�
�

���
�

��
�

����
�

�
�

���

�
��

�
����

�

�
�

���

�
��

�
����

�

�
�

���

�
��

�
����

�

�
�

���

��
���

�

�����
��

�
��

����

��
���

�

�����
��

�
��

����

�
��

�
����

�

�
�

���

�
��

�
����

�

�
�

���

�
��

�
����

�

�
�

���

��
���

�

�����
��

�
��

����

��
���

�

�����
��

�
��

����

�
��

�
����

�

�
�

���

�
��

�
����

�

�
�

���

�
��

�
����

�

�
�

���

��
���

�

�����
��

�
��

����

��
���

�

�����
��

�
��

����

�
��

�
����

�

�
�

���

�
��

�
����

�

�
�

���

�
��

�
����

�

�
�

���

��
���

�

�����
��

�
��

����

��
���

�

�����
��

�
��

����

�
��

�
����

�

�
�

���

�
��

�
����

�

�
�

���

�
��

�
����

�

�
�

���

��
���

�

�����
��

�
��

����

��
���

�

�����
��

�
��

����

Figure 4.7: Tilings of the plane based on the Penrose triangle. The one on the
left has a consistent depth labelling, whereas the one on the right does not. In
both cases we assume all vertices are cubic corners.

vertices are cubic corners, the drawing on the right has no legal depth labelling,
which corresponds well with our inability to interpret the non-vertical lines as
sloping towards or away from the viewer.

As further examples of the use of our depth-labelling scheme to detect im-
possible figures, consider the drawings in Figures 4.8 and 4.9. In both cases,
we assume cubic corners and produce a depth labelling. This then leads to a
contradiction since there is an impossible depth cycle. In Figure 4.8(b), this is
flagrant since the arrows shown in the figure indicate a cycle of points in 3D
of increasing depth, which is clearly impossible. In Figure 4.9(b), one line has
an arrow pointing in the opposite direction, but this decrease in depth is more
than cancelled out by the longer parallel line whose arrow indicates increasing
depth. Of course these impossible depth cycles only prove that there is no legal
interpretation of the drawings involving objects with only cubic corners. Both
drawings are physically realizable. Similar reasoning allows us to deduce that
the drawings in Figures 2.2(c), 2.3(b), 2.4, 2.14(a), 2.8(a) and 2.8(b) are unre-
alizable as projections of objects with cubic corners. However, we emphasize
that depth labelling followed by the detection of depth cycles does not detect
all impossible figures (notably the drawings in Figures 2.9 and 2.13).

64 CHAPTER 4. DISCRETE INFLATION USING CUBIC CORNERS

(a)

�

����
�����
���� ����

��

�
�

�

�

��������

�������

������

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�

(b)
��

�� �
��

�

����
�����
���� ����

��

�
�

�

�

��������

�������

������

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�

Figure 4.8: A figure which is impossible, assuming all vertices are cubic corners,
due to the impossible depth cycle shown.

(a)

������

�
�

�
�
�
�

�

�

�
������

�

�

�

����

(b)

������

�
�

�
�

�
�

�

�

�
������

�

�

�

����

��
��

..���

��A

B
C

D

.

Figure 4.9: A drawing which is not realizable as a collection of objects with cubic
corners due to the inconsistency of the depths of points along cycle ABCD.

������

������

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

������

���������
����

����

(a)

A

B

C

D

�
�

�
�

�

���������
E

������

������

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

������

���������
����

����

(b)

���--
A

B

C

D

�
�

�
�

�

���������
E

�"

Figure 4.10: Example of the propagation of depth labels

4.5. PROPAGATION OF DEPTH LABELS 65

4.5 Propagation of Depth Labels

An important property of depth labels is that they can propagate to other lines
via one of the three following rules based on pairs of parallel edges, sets of
coplanar edges or cubic corners:

1. Edges which are parallel in 3D have the same depth label.

2. If L1, . . . , Lp are projections of a set of coplanar edges (lying in a plane P)
and v1, . . . , vp are the 2D unit vectors created from these lines by orienting
them according to their depth label, then there exists a 2D unit vector v
(corresponding to the projection in the image plane of the normal to P)
such that each Li (i = 1, . . . , p) subtends an acute angle with v.

3. Let L1, . . . , Lp, P and v1, . . . , vp be as above and suppose that L0 (with
corresponding unit vector v0) is the projection of a line such that L0, L1, L2

are the projections of the three edges meeting at a cubic corner. Then v
(above) is given by v = −v0.

As an example of the propagation of depth labels according to these three
rules, consider the drawing in Figure 4.10(a). Junction A is a candidate for
the projection of a cubic corner (according to Perkins’s rules [130]), whereas B
is not. The catalogue in Figure 4.1 gives the depth labelling shown, assuming
that propagation of semantic labels has allowed us to identify A as a Y(+)
junction. The depth label of line BC shown in Figure 4.10 follows directly from
rule 2 above. The depth label of CE follows from rule 3 above. (Note that if
we were given the depth labels of AD and AB, without knowing that A was a
cubic corner, then we could still apply rule 2 to deduce the depth label of BC,
but the depth label of CE would be ambiguous.) The depth labels of all other
lines in the drawing then follow from rule 1 above.

It is important to point out that the three propagation rules above only
apply to drawings produced under orthographic projection. Under orthographic
projection a straight line has the same depth label at both ends. However,
under perspective projection this no longer holds. Consider the 3D line AB
in Figure 4.11(a): assuming that A and B are both cubic corners, the nearest
point to the viewer along line AB lies at the point, midway between A and
B, at which the line of sight is perpendicular to AB. Consider a perspective
projection with centre of projection O. Let L be a line in the drawing which is
the projection of a 3D edge E and let PE be the plane which passes through O
and is normal to E. Denote by S the point of intersection of E with PE and
by T its projection in the drawing. We assign a distinct depth label to each
point A on L as follows: the depth labelling at A is such that the arrow points
away from point T . We call T the transition point of L. Under perspective
projection, we have to modify our rules for propagating depth labels (via sets
of parallel or coplanar lines) as follows:

1. If lines L1, . . . , Lr are projections of parallel 3D edges E1, . . . , Er, then
the transition points T1, . . . , Tr of lines L1, . . . , Lr are collinear. They lie

66 CHAPTER 4. DISCRETE INFLATION USING CUBIC CORNERS

(a)

B

A

/

/

/////

/////

///

///

//

//

(b)

####

##
##

��
��

#############
#############

�������

�������

#

#

�
�

�
�

Figure 4.11: (a) A perspective projection; (b) a physically unrealizable drawing.

on a line which is the projection of the plane P which passes through the
centre of projection O and is normal to all of the edges E1, . . . , Er.

2. Let line L be the projection of a 3D edge lying on a plane P , and let V be
the vanishing point of 3D edges which are normal to P . Then the depth
label at a point Q on L is such that L considered as a vector oriented by
this depth-label subtends an acute angle with V Q.

Consider the drawing in Figure 4.11(b) (adapted from [61]). Assuming that all
vertices are cubic corners allows us to deduce that all the lines in the drawing
which are neither horizontal nor vertical are projections of parallel 3D lines and
hence must meet at a vanishing point somewhere off to the right of the drawing.
The catalogue of depth-labelled junctions (Figure 4.1) allows us to assign depth
labels to all line ends. The fact that the two ends of each long vertical line have
a different depth label is an important reason for considering this drawing as
a perspective rather than an orthographic projection. The above propagation
rules allow us to propagate these labels to every point of every line. Physical
impossibility does not follow directly from the depth labelling but rather from
recognition that the subdrawing consisting of any two columns, together with
the base and the roof, form a simple example of an impossible object from the
impossible closed curve class (described in Section 2.1).

4.6. ORTHOGONALITY CONSTRAINTS ON CUBIC CORNERS 67

������

������

	
	

	

	
	

	

������

������

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�������

�
�

�

A

B

CD

E

F

G

H

I

J

K

L

Figure 4.12: Examples of the application of the orthogonality rules.

4.6 Orthogonality Constraints on Cubic Corners

To identify cubic corners, we applied the simple criterion that the interpreta-
tion involving the largest number of cubic corners was the most likely one. The
following orthogonality rules were also applied to avoid obvious geometric in-
consistencies. L1⊥L2 means that L1, L2 are orthogonal; L1//L2 means that
L1, L2 are parallel; cubic(V) means that vertex V is a cubic corner. In these
orthogonality rules, the 3D lines L1, L2, L3 meet at vertex V and the 3D lines
L′

1, L
′
2, L

′
3 meet at V ′.

1. By definition, cubic(V) if and only if L1⊥L2, L2⊥L3 and L3⊥L1.

2. If L1//L
′
1, L2//L

′
2 and L1⊥L2, then L′

1⊥L′
2.

3. If the plane of L1, L2 is parallel to the plane of L′
1, L

′
2, L1⊥L2, L1//L

′
1,

but L2 is not parallel to L′
2, then L′

1 is not orthogonal to L′
2.

4. If the plane of L1, L2 is parallel to the plane of L′
1, L

′
2 and cubic(V), but

L3 is not parallel to L′
3, then V ′ is not a cubic corner.

For example, in Figure 4.12, suppose thatA is a cubic corner and that a semantic
labelling of the drawing has allowed us to deduce thatA, B,H , J , C are coplanar
[37]. Rule 1 implies that AB, AC, AD are orthogonal. Then three applications
of rule 2 tells us that C is also a cubic corner. We can also deduce from rule
2, that GF⊥FE, which means that F is a valid candidate for a cubic corner.
However, rule 3 tells us that B cannot be a cubic corner, since BH is not parallel
to AC. Knowing that A, B, H , J , C are coplanar, we can apply rule 4 to deduce
that H is not a cubic corner, since plane BAC is parallel to (in fact coincident
with) plane BHJ , but HI is not parallel to AD.

As another example, consider the drawing in Figure 4.13(a). The drawing
has the unique trihedral semantic labelling shown in Figure 4.13(b). Suppose
that vertex A is a cubic corner. Then lines AB, AD, AE have the depth

68 CHAPTER 4. DISCRETE INFLATION USING CUBIC CORNERS

(a)

A

�������
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��
�����������

�

�
�

��

�
�

��

 /////

(b)

A

B

C

D

E

U

V

WX

Y

S

+

+

+

−

�������������
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��
���������������������

�
�

�

�
�

�
�

�
��

�
�

�
�

�
�

��

//////////

*�

�*

�

��

�

��

#		
�

���

�����

�
		

Figure 4.13: Examples of the combination of different rules.

4.6. ORTHOGONALITY CONSTRAINTS ON CUBIC CORNERS 69

labels shown. From the semantic labelling we can deduce that line WV lies
on face S. The depth label of WV , shown in Figure 4.13(b), follows from our
propagation rules (since we have the direction of the normal AE to S). The
semantic labelling tells us that the projection of W is an L1(+) junction, but
then the depth-labelling catalogue tells us that W cannot be a cubic corner
(since the depth label of WV points in the wrong direction). Vertex X cannot
be a cubic corner either, since UX , XW lie on the surface S but XY cannot be
normal to S since it is not parallel to AE. Vertex B cannot be a cubic corner
since BC is not parallel to AD. Similarly, D cannot be a cubic corner since DE
is not parallel to AE. Vertices E, U , V cannot be cubic corners since they do
not satisfy Perkins’s rule.

Vertex C is an interesting case since it involves reasoning about a hidden
edge. Any hidden third edge terminating at C is necessarily occluded by the
surface S and hence cannot be parallel to AE; this shows that C cannot be
a cubic corner. We can reason not only about hidden lines but also about
hidden planes. For example, assuming that vertices A, B, K in Figure 4.12 are
trihedral allows us to deduce thatD, A, B, K, L are coplanar. (Such coplanarity
constraints are described in detail in Chapter 6, where it is shown that they also
apply to curved objects with some straight edges.) It then follows that, if A in
Figure 4.12 is a cubic corner, then K cannot be a cubic corner since KI is not
parallel to AC.

In the fourth orthogonality rule, above, for lines L3, L
′
3 to be parallel, they

must satisfy three criteria: their 2D projections must be parallel, these projec-
tions must have identical depth labels and L3, L

′
3 must have the same inclination

to the image plane. For the calculation of this inclination angle, consider a cubic
corner V at which lines AV , BV , CV meet in 3D. Suppose, for concreteness,
that V projects into a Y junction and let A′, B′, C′, V ′ denote the projections
of A, B, C, V on the image plane. Let β be the angle A′V ′C′ and γ the angle
A′V ′B′. Then it is well known [130, 89, 166] that the angle of inclination θ of
AV to the image plane is given by

tan2 θ = tanβ tanγ − 1. (4.1)

The sign of θ is given by the depth label assigned to A′V ′. Figure 4.14 shows
an example in which the two vertices A and B cannot simultaneously be inter-
preted as cubic corners, since the above calculation leads to different inclination
angles for the 3D edges AC and BD (and hence for surface S). On the other
hand, vertices E and F could simultaneously be cubic corners. Applying the
depth-label catalogue, the propagation rules and the orthogonality rules means
that, for each 3D face S, we have at most one 3D orientation for S (correspond-
ing to the unit 3D vector normal to S). It is possible that these orientations
may be mutually inconsistent, since we are basically using only a simplified
version of gradient space constraints [107]. Our aim is to help a human user
by approximating human vision rather than to detect all physically impossible
drawings.

70 CHAPTER 4. DISCRETE INFLATION USING CUBIC CORNERS

	
	

	

	
	

	

������
�������

�
�������A B

C DE

F

S

Figure 4.14: Vertices A and B cannot both be cubic corners since this would
imply different inclinations of lines AC and BD.

(a)

����

����

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

����0
0
0
0
00

�
�

��

�
�

�
�

��

����A

B
E

C

D

F

G

(b)

������

������

����

����������

1

1
1
11

1
1
1
11

���

������

���������

A

B

C

D

E

F

G
H

I
J

Figure 4.15: Examples of drawings of objects with some cubic corners (adapted
from Varley and Martin [165])

4.7 Experimental Trials

We used a sample of 103 line drawings of polyhedral objects under orthographic
projection to test the validity of the heuristic which maximizes the number of
cubic corners in an interpretation (subject to the orthogonality rules, above).
These drawings are the set of figures in Varley and Martin’s paper [165] after
elimination of repeated or mirror-image drawings. These figures were created for
an entirely different purpose, namely the presentation of a catalogue of labellings
of projections of tetrahedral vertices. The algorithm we applied to each drawing
was:

1. Find a semantic labelling of the drawing using Varley and Martin’s tetra-
hedral catalogue and eliminating ambiguity by applying labelling con-
straints based on the presence of parallel lines (described in detail in
Chapter 3).

2. Maximize the number of cubic corners subject to Perkins’s rule, the depth-
labelling catalogue of Figure 4.1 and the orthogonality rules above.

In 92 of the 103 drawings, all visible vertices were correctly labelled as cubic
or non-cubic. In 5 of the 103 drawings, a single vertex was spuriously identified

4.7. EXPERIMENTAL TRIALS 71

as cubic. Vertex G in Figure 4.15(a) is a typical example: it was not intended
by Varley and Martin to represent a cubic corner, but this conclusion is not
geometrically incoherent. On the remaining 6 of the 103 drawings our algorithm
failed miserably. To explain this, consider the simplified examples shown in
Figure 4.16. Our algorithm blindly decides that A, B, C, D, E, F , G, H , I
are all cubic corners. It is clear that for certain drawings, other heuristics are
important, such as symmetry, equality of angles, verticality and isometry [103].

It is worthwhile looking at an example in some detail, namely Figure 4.15(b).
Maximizing the number of cubic corners tells us that A, B, C, D, E, F are cubic
corners. (For example, if, as an alternative hypothesis, we suppose that I is a
cubic corner, then applying the orthogonality rules allows us to deduce that none
of B, C, D, E, F , G, H can be cubic corners.) Applying the depth-labelling
catalogue and propagating allows us to assign a depth label to all lines.

The 97 drawings for which our algorithm provided a plausible interpretation
contain a total of 424 visible faces. The 3D orientation of 343 of these faces was
determined directly by applying Equation (4.1). For 62 other faces we were able
to determine orientation by applying two very simple geometrical rules:

1. If lines L1,L2 lie on face S, lines L′
1,L

′
2 lie on face S′, L1//L

′
1, L2//L

′
2 and

L1 is not parallel to L2, then faces S,S′ are parallel and hence have the
same orientation.

2. The orientation of a face S is determined once the depths of three non-
collinear points lying on S are known.

As an example of the use of rule 2 above, consider the three faces which meet
at I in Figure 4.15(b). Knowing that F is a cubic corner allows us to calculate
the orientation of faces HIF and DJIFE. Knowing the orientation of the two
other faces meeting at vertex I uniquely determines the orientation of the third
face GHIJ . As pointed out by Draper [59], this method is theoretically in-
complete since for some drawings a 3D model exists but cannot be constructed
incrementally. For more complex drawings, we could apply the full power of
the linear programming approach [152, 154, 155], described in Chapter 6, to
calculate those face orientations which are uniquely determined by known face
orientations. In an alternative approach, Li [101] uses vectorial equations to
parameterize the set of all possible solutions. Methods for avoiding superstrict-
ness include shifting the positions of a minimal subset of junctions [152, 155],
finding an optimal simultaneous modification to all junction positions [73] or
simply allowing a tolerance in all the equations and inequalities [37].

Applying the two simple geometric rules above left only 19 faces (out of 424)
whose orientation remained ambiguous. We estimate that the orientation of 8
of these faces would be unambiguous to most human viewers due to reasoning
about hidden surfaces, symmetry and collinearity, whereas the orientation of 11
faces would appear ambiguous to many human viewers. The triangular face in
Figure 4.15(a) is a typical example that we placed in the ‘ambiguous’ category.

An important point to make is that, if we do not identify vertices as cubic
corners, then the orientations of all of the 424 faces are ambiguous. For example,

72 CHAPTER 4. DISCRETE INFLATION USING CUBIC CORNERS

��

��

��

��

�
�

�
�

�
�

�
�

����

A

B

C

�
�

�� �
�

��

�
�

�
�

-
-
--

D

E

�
�

�
�

�
�

�
�

!!!"""

F

G

H

I

Figure 4.16: Drawings for which human beings prefer interpretations involving
symmetry, equal angles and isometry rather than cubic corners.

(a) (b) (c)
������

������

�
�

�

�
�

�
������

�
�

�

������

������

�
�

�

�
�

�
������

�
�

�

������

������

�
�

�

�
�

�
������

�
�

�

��

���
�
�

�
�
�

�
�
�
��

�
�
�
��

�
�
�
�
�
�

�
�
�
�
�
��

�
�
�
�
�
��

�
�
�
�
�
��

�
�
�
��

�
�
�
��

�
�
��

�
�
��

����

������
������
������

�
�

�
�

�
�

�
�

� �
�

�
�

�
�

�
�

�

������
������

Figure 4.17: (a) A line drawing; (b) with depth contours added; (c) with brick
structure added.

the drawing in Figure 4.15(b) could theoretically represent any of an infinite
family of objects obtained by squeezing or stretching the object in depth.

4.8 Adding Depth Information to Line

Drawings

Two ways of representing surface orientation are shown in Figure 4.17. Under
an assumption that the central Y junction of the drawing in Figure 4.17(a)
is a cubic corner, we can uniquely determine the 3D orientations of the three
visible surfaces using Equation (4.1). These orientations can then be made more
explicit in the drawing by adding extra information such as depth contours
(Figure 4.17(b)) or surface texture (Figure 4.17(c)). Consider a cubic corner
projecting into a Y junction at which lines L1, L2, L3 meet. Within the region
bounded by lines L1, L2, the depth contour is perpendicular to L3 and the
perpendicular distance between two consecutive depth contours at depths d and
d+ 1 is 1/ tan θ, where tan θ is given by Equation (4.1).

Another approach (which could even be combined with depth contours or
surface texture) is to shade the faces using some standard computer graphics
rendering algorithm. Yet another approach is to use false colours with, for exam-
ple, more distant surface points being more blue. Elber [60] has demonstrated

4.9. VERTICES WHICH ARE NOT CUBIC CORNERS 73

that depth information can be displayed in the original line drawing itself by
making the width or darkness of lines inversely proportional to 3D depth. A
more artistic approach is to make line thickness proportional to surface orien-
tation and to explicitly insert gaps in contours to exaggerate the brightness of
contour edges [51].

Whereas many workers have addressed the problem of 3D-object reconstruc-
tion from a single line drawing, in this chapter we have a more modest aim of
image enhancement by addition of possibly incomplete depth information. We
do not encounter the same superstrictness problems as in 3D-object reconstruc-
tion. For example, the drawing in Figure 2.2(b) can be analysed without having
first to automatically correct the original line drawing [152].

4.9 Vertices Which Are Not Cubic Corners

A trihedral vertex may have some intrinsic structure, even when it is not a cubic
corner, which renders it more likely to occur than a random vertex. At a cubic
corner, three edges meet at right angles. We can relax this condition in various
ways to produce different classes of structured vertices. Consider a vertex V
formed by three convex edges E1, E2, E3. Let Fi denote the face opposite (i.e.
which is not adjacent to) edge Ei. Let αi represent the angle between the two
edges lying on face Fi, and let δi represent the dihedral angle between the faces
which intersect along Ei. We consider that the most likely forms of intrinsic
structure that a vertex of a man-made object can possess are given by αi = π

2 ,
δi = π

2 , αi = αj (for some i �= j) or δi = δj (for some i �= j). At a cubic
corner, all such equalities hold. A cubic corner has no degrees of freedom, since
α1 = α2 = α3 = π

2 , whereas a general vertex has three degrees of freedom, since
α1, α2, α3 are arbitrary. In this section we consider trihedral vertices which have
one degree of freedom.

Let Pij be a plane bisecting edges Ei, Ej and normal to the plane of these
two edges. Then (αi = αj) ⇔ (Pij is a plane of symmetry of vertex V) ⇔
(δi = δj). Furthermore, if i, j, k are all distinct, then (αi = αj = π

2) ⇔ (Ek

is normal to face Fk) ⇔ (δi = δj = π
2). From these observations it is easy to

deduce that there are four distinct classes of trihedral vertices with exactly one
degree of freedom:

Oblique rectangular corner: αi = αj = π
2 (and hence δi = δj = π

2);

Symmetric vertex with right angle: α= π
2 and αj =αk (and hence δj =δk);

Symmetric vertex with dihedral right-angle: δi = π
2 and αj = αk (and

hence δj = δk);

Equiangular vertex: αi = αj = αk (and hence δj = δk = δk).

More than half of the examples of trihedral vertices which are not cubic
corners in the 172 figures of [165] are oblique rectangular corners. We therefore

74 CHAPTER 4. DISCRETE INFLATION USING CUBIC CORNERS

�� ��
��

�������

��

�����

�
�

� � �
�

�
�

�
�

�
�

�
�

� �
�

�

�
�

�
�

�
�
�

�

�
�
�

�

�
�
�

�

�
�
�

�•
•

•
•

•

•

��� ����

�
��������

�

�
�

�

�
� �

�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�

���

���
��

•
• •

•
•

•

���������������

��������

���
��

�����

����

���

���
�

��
�

��
�

�
�

�
�

�

�

�

�

�

������

��

��
������

��

�

• •

•
•

•
•

Figure 4.18: Examples of the 18 distinct types of oblique rectangular corners,
marked by a •.

investigated the depth labellings of oblique rectangular corners. Figure 4.18
shows the different types of oblique rectangular corners. For each of these 18
vertex-types, we divided 3D space into sectors separated by the planes of the
three faces Fi, Fj , Fk together with the two planes Ni, Nj normal to edges Ei,
Ej (respectively) and passing through the vertex. Note that plane Nk coincides
with the plane of Fk by definition of an oblique rectangular corner. The la-
belling of the projection of a vertex is identical for all viewpoints lying within
the same sector. By exhaustive search we established a catalogue of labelled
junctions which are projections of oblique rectangular corners. The most inter-
esting result, which we could, in fact, have obtained directly by simple geometric
arguments, is that for Y(+), Y(-), W(+), W(-) junctions whose angles satisfy
Perkins’s conditions (see caption of Figure 4.1) and for T, Ψ and X junctions
with semantic labels and acute angles as shown in Figure 4.3, the only depth
labellings of projections of oblique rectangular corners are exactly the same as
for cubic corners.

This study of oblique rectangular corners demonstrates the robustness of
our depth-labelling catalogue (except for the labelling of L junctions) when the
definition of a cubic corner is relaxed so that one of the angles αk �= π

2 . However,
it should be noted that this result does not hold for symmetric vertices (with
right angle or dihedral right angle) or for equiangular vertices.

4.10. DISCUSSION 75

�
�

�
�

�
�

�
�

�
�

!!!!
�

�
�

��

�
�

�
�

�
�

�
�

�
�

""""
�

�
�

��P Q

R

(a)

��

��

��

��

��
��

��

��

����
��

���

��

�

A

B

C
D

P

Q

R

(b)

��

��

��

��

��
��

��

��

����

��
���

��

�

P

Q

R

(c)

Figure 4.19: Objects which contain no cubic corners, but for which a satisfactory
inflation exists by assuming that faces P , Q, R lie in orthogonal planes.

4.10 Discussion

Any drawing has a valid 3D interpretation as the projection of a flat scene in
which all its visible lines and vertices are coplanar. A drawing whose most likely
interpretation is not flat (i.e. not all lines and vertices are coplanar) is said to
inflate. It suffices that a single Y or W be interpreted as a cubic corner, for
the drawing to inflate. However, many objects do not contain cubic corners.
Figure 4.19 shows three examples of such objects. There is no possible interpre-
tation of Figure 4.19(a) containing cubic corners because all six junctions fail
Perkins’s criterion. A highly implausible, but physically possible, interpretation
of Figure 4.19(b) exists in which one Y junction and two L junctions are cubic
corners.

It is possible to extend the set of objects we can correctly inflate by looking
for virtual cubic corners, such as the intersection of the planes of faces P , Q,
R in Figure 4.19(b). If three faces P , Q, R pairwise mutually intersect along
edges which are not parallel, then the planes of faces P , Q, R meet at a point
in 3D space. Let EPQ denote the 3D edge between faces P and Q and let LPQ

denote the projection in the drawing of EPQ (with LQR, LRP defined similarly).
Extending lines LPQ, LQR, LRP to infinity in both directions produces six half-
lines for each of which we can calculate a slope. If three of these slopes are
spanned by an angle less than or equal to π

2 , then it is not possible that faces P ,
Q, R lie on orthogonal planes. This is a simple extension of Perkins’s criterion
to virtual cubic corners.

Since a virtual cubic corner has the same geometric properties as a real cubic
corner, we can apply the depth-labelling catalogue of Figure 4.1 to any virtual
cubic corner. Due to digitization errors, it is unlikely that the extensions of LPQ,
LQR, LRP will actually meet at a point. We have therefore phrased Perkins’s
criterion, above, so that it can be tested even if LPQ, LQR, LRP do not meet
at a point. Furthermore, Perkins’s criterion is applied with a tolerance of ε, as
described in Section 4.3.

It is possible to detect virtual cubic corners even when one of the faces is

76 CHAPTER 4. DISCRETE INFLATION USING CUBIC CORNERS

occluded. If we assume that vertices B and C in Figure 4.19(b) are trihedral,
then coplanarity constraints [37] tell us that vertices A, B, C, D are coplanar
since they lie on the same face. Denote this face by S. Then P , Q, S form a
virtual W junction, which can be the projection of a virtual cubic corner. Thus,
we can detect four mutually consistent virtual cubic corners in Figure 4.19(b).

We believe that it is important to detect basic 3D structural properties,
such as coplanarity, parallel planes, orthogonality and symmetry, before trying
to assign exact depths to all vertices. Consider again the simple drawing in
Figure 4.4(a). By actively searching for structural properties we can obtain a
small number of hypotheses, including α = π

2 , α = δ and δ = π
2 , which need

to be investigated further. This is indeed the approach of Ding and Young
[57]. Optimization over continuous domains (such as the depths of vertices), on
the other hand, excludes the possibility of complete search. This means that
the objective function must not only be constructed to have its global minima
corresponding to the most likely interpretations but must also be well behaved
in the rest of the search space (absence of local minima and no large plateaux
in between these minima).

Marill [111] suggests minimizing the standard deviation σ of 3D angles be-
tween adjacent edges in order to inflate drawings. However, this often gives
anomalous results. For example, in Figure 4.19, σ is minimized as all the 3D
angles in faces P , Q, R approach π

2 , i.e. as the height of the truncated pyramid
approaches infinity. Minimizing the standard deviation of segment lengths [15]
provides a satisfactory interpretation of Figure 4.19(a), but it produces other
anomalies. For example, the 3D angle θ between faces P and R will be found
to be smaller in Figure 4.19(b) than in Figure 4.19(c). The choice of the best
objective function for the inflation of drawings of objects with no cubic corners
or virtual corners remains for the moment an open question.

4.11 Conclusion

We have introduced a new labelling scheme for line drawings. Labels indicating
the direction of increasing depth of the corresponding 3D line provide a par-
tial depth ordering of object vertices. This labelling scheme, based on human
preference for interpretations involving cubic corners, allowed us to explain why
certain drawings appear impossible. It is also an essential ingredient in our algo-
rithm to add depth information to line drawings. We believe that human vision
uses an even richer discrete labelling scheme involving, for example, the identifi-
cation of coplanar points, pairs of parallel surfaces, collinear points, equidistant
pairs of points, equal angles, lines of symmetry, etc. Our simple optimization
criteria, namely minimizing the number of tetrahedral vertices [43] and maxi-
mizing the number of cubic corners, need to be extended to account for human
preference for other common properties of man-made objects such as symmetry,
isometry, right angles, parallel planes, etc. Varley et al. [169] list 16 different
compliance functions used by various machine vision systems employing numer-
ical optimization.

4.11. CONCLUSION 77

The experiments reported in this chapter demonstrate the feasibility of ex-
tending the traditional line labelling problem [20, 75] in three ways:

• Allowing non-trihedral vertices,

• The introduction of new discrete variables (depth labels for lines and the
labelling of junctions as projections of cubic corners),

• The introduction of an optimization criterion (the maximization of the
number of cubic corners.

This (or a similar) labelling scheme may prove useful in various applications,
including the 3D reconstruction of an object from a wireframe projection
(Chapter 7), a sketch [104, 27] or a drawing with missing lines [38, 57].

Chapter 5

A Rich Labeling Scheme
for Curved Objects

5.1 Labeling Line Drawings of Curved Objects

Early work on line drawing interpretation made the very restrictive assumption
that all objects were polyhedra. Malik [109] was the first to draw up a catalogue
of legally labelled junctions for a formally defined class of curved objects by
assuming that objects have smooth C3 surfaces separated by edges representing
a discontinuity of the surface normal. No edge or surface is tangential to another
edge or surface. As in the polyhedral case, the drawing is assumed to be a perfect
projection of a manifold object (a 3-manifold bounded by a 2-manifold) from
a general viewpoint. This is the basic set of assumptions we make concerning
line drawings of curved objects, although we will discuss how to cope with
relaxations of these assumptions using valued constraints.

A new type of line occurs in drawings of curved objects since a curved surface
may occlude itself. Consider, for example, the visible boundary of a sphere. The
locus of points at which the line of sight is tangential to the object surface is
called an extremal edge, a fold, a virtual edge or a phantom edge since its 3D
position varies with changes in the viewpoint. Its label is a double-headed arrow,
but for typographical reasons we use ⇒ to represent this extremal label in the
text of the book.

When surfaces are curved, the semantic label of a line may change at any
point at which L intersects a hidden extremal line. Such transitions from oc-
cluding to convex labels, such as point P in Figure 5.2(a), are common in line
drawings of curved objects. Other transitions may occur. For example, as
pointed out in [32], a convex-concave transition can occur if distinct surfaces
are tangential to each other. Under the straight-edge formation assumption,
which says that a straight edge is formed by the intersection of two locally pla-
nar surfaces [37], the semantic label of a line L is invariant along any straight
segment of L. In particular, a straight line has a unique semantic label.

79

80 CHAPTER 5. A RICH LABELING SCHEME FOR CURVED OBJECTS

Under our basic assumptions, there are only four ways that lines can project
into junctions in a drawing [131]:

• Three or more surfaces meet at a 3D vertex which is topologically equiv-
alent to a polyhedral vertex.

• An edge occludes another (projecting into a T junction).

• A surface intersects a self-occluding curved surface to form a semi-fold
point (projecting into a C, curvature-L or a 3-tangent junction depending
on the viewpoint).

• A curved surface smooths out so that it no longer occludes itself (project-
ing into a terminal junction).

Figure 5.1 gives the list of labelled junctions that must be added to the
catalogue of labelled junctions for polyhedral objects (such as Figure 3.2 if
we restrict ourselves to trihedral vertices). At a terminal junction, a line L
terminates at a point P . Under our assumptions, L is necessarily the projection
of an extremal edge and L forms a cusp with a hidden extremal line. Terminal
junctions have been studied in detail by Koenderink and van Doorn [94, 93]
using differential geometry and singularity theory.

Both curvature-L and 3-tangent junctions have reflected versions whose le-
gal labellings can easily be obtained by reflection of the labellings given in
Figure 5.1. A black dot on a line represents a discontinuity of curvature. At
a 3-tangent junction there is continuity of curvature between the lines labelled
+ and ← (since they are projections of the same edge) but a discontinuity of
curvature between the extremal line (labelled ⇐) and the surface-normal dis-
continuity lines (labelled + and←). At a C junction there is no discontinuity of
curvature. This renders the junction invisible; the C junction is often known as
a phantom junction. The presence of a discontinuity of curvature at curvature-L
and 3-tangent junctions was proved formally by Nalwa [119]. At a curvature-L
junction the continuation of the surface-normal discontinuity line (labelled −
or ←) must lie to the right of the extremal line as we follow this extremal line
in the direction of its arrows, since the corresponding edge lies on the hidden
part of the self-occluding curved surface. Although physically possible [32], the
two curvature-L labellings on the right-hand side of Figure 5.1 are much less
likely than the two labellings on the left-hand side. Similarly, the two lower
labellings of a C junction in Figure 5.1 are much less likely than the three upper
labellings [32]. In the valued constraint framework, we can apply a high cost
to such unlikely labellings. Furthermore, we can minimize the number of label
transitions by assigning a non-zero cost to the first two labellings of C junctions
in Figure 5.1.

When two straight-line segments are collinear, they do not necessarily have
the same semantic label. However, under the general viewpoint assumption
(GVA), a viewpoint-dependent edge (⇐, ⇒) should not be collinear with a
viewpoint-independent edge (+, −, ←, →). Furthermore, edges labelled ⇐ and
⇒ should not be collinear [37].

5.1. LABELING LINE DRAWINGS OF CURVED OBJECTS 81

C

���
+ �

��
+ x x

�
��

+ ���+

3-tangent

��
�� •

L1 + L2

���

terminal

P
������

T

x

� �� �
� �� �

curvature-L

•
−

��
�� •−

������

•
���

��
�� •�

�

������

Figure 5.1: The catalogue of labellings of viewpoint-dependent junctions in
drawings of objects with piecewise C3 surfaces (to be added to the labellings of
viewpoint-independent junctions). x represents any of the six labels.

82 CHAPTER 5. A RICH LABELING SCHEME FOR CURVED OBJECTS

We can extend our catalogue to cover objects whose edges and surfaces may
meet tangentially [34]. Unfortunately, this considerably increases the number
of labellings for C junctions (phantom junctions); indeed, the two ends of a line
may now be labelled by any pair of distinct surface-normal discontinuity labels
(+,−,←,→) due to the possible presence of one or two undetectable C junctions
along the line. The resulting constraints are too weak, in the sense that most
drawings will now have an exponential number of legal labellings [32]. This
problem can be avoided in the valued constraint framework by assigning non-
zero costs to the new junction labellings in order to differentiate between the
many different physically possible interpretations of a drawing.

The assumption of C3 surfaces disallows points of infinite curvature, and
thus, unfortunately, disallows apices of cones. This can be remedied by simply
adding an extra labelling (⇐,⇐) to the list of labellings of L junctions (in
Figure 3.2). However, allowing surface curvature to tend to infinity at any vertex
also makes all junction labellings physically possible for all junction types and
furthermore permits undetectable transitions between ⇒ and → labels. Again,
in the soft constraint formulation of line drawing labelling we can assign a large
(but nevertheless finite) cost to all junction labellings which require surfaces of
infinite curvature.

Determining whether a given label for a given line is part of a consistent
labelling of a drawing of a polyhedral scene is NP-complete [92]. An interesting
property of the catalogue of labelled junctions for objects with possibly curved
C3 surface patches is that, in this case, the same problem can be solved in linear
time [34, 36] (Theorem 9.17). We can use this algorithm as a filter to reduce
the size of the space to be searched for an optimal labelling.

5.2 Regularities in Man-Made Objects

Most man-made objects have certain characteristic shape features which distin-
guish them from natural objects such as rocks, clouds, trees or running water.
In this chapter we concentrate on planarity and orthogonality, although clearly
other regularities (such as symmetry and isometry) can also provide useful vi-
sual clues in the interpretation of drawings of man-made objects. We present a
discrete labelling scheme for line drawings of curved objects which can be seen
as an information-rich extension of the classic line-labelling scheme in which
lines are classified as convex, concave, occluding or extremal. New labels are
introduced to distinguish between curved and planar surface patches, to identify
orthogonal edges and to indicate gradient directions of planar surface patches.
Human vision has a marked preference for interpretations involving planar faces
and orthogonal edges, which leads to a natural formulation of the problem as a
soft constraint satisfaction problem.

We say that an edge E, whether curved or planar, is orthogonal if at each
point on E the tangents to the two surfaces which meet at E are orthogonal.
Consider, as an illustration, the two drawings in Figure 5.2. Of the 20 visi-
ble faces of these two objects, 13 are planar. Of the 57 visible edges, 51 are

5.2. REGULARITIES IN MAN-MADE OBJECTS 83

�
��

�
��

�
��

�
��

�
��

�
�

�
��

�
��

�
��

						

				

				

				

				

											

		

		

				

		

B

A
E

P

*

*

*

*

(a)

J
K

�
�

�
��

�
�

�
����
��

*

*

(b)

Figure 5.2: Examples of drawings of curved man-made objects (from [12] and
[28]). Non-orthogonal edges are marked with an asterisk.

orthogonal, the 6 non-orthogonal edges being marked by an asterisk. Both
of these drawings appear unambiguous to a human viewer. In particular, we
immediately identify surface A in Figure 5.2(a) as planar and surface B as
curved, although most people have great difficulty in explaining why they came
to this conclusion. This chapter is concerned with setting down some basic local
geometrical rules which will allow a computer to automatically identify planar
surfaces and orthogonal edges. Possible applications include sketch interpreta-
tion, automatic indexing of databases of line drawings, the input of 3D object
models, the creation of 2 1

2D illustrations in electronic documents and object
recognition in computer vision.

We follow in the tradition of Kanade [87, 88], who advocated the use of more
information about the physical world, thereby avoiding overstrict constraints
based on unrealistic assumptions (such as planar surfaces meeting at trihedral
vertices [75, 20]) or the optimization of a fairly arbitrary objective function. In
Chapter 3 we showed how the VCSP [140] provides a framework in which we can
combine strict geometrical constraints and preference constraints. An example
of a strict geometrical constraint is that parallel 3D lines cannot intersect; an
example of a preference constraint is that we prefer a pair of lines which are
parallel (within a given error tolerance) in a drawing to be projections of 3D
parallel edges, since parallel edges are common features of man-made objects.
Our approach is similar to that of Ding and Young [57], who used a truth
maintenance system for the analysis of imperfect line drawings. We introduce
new constraints for the analysis of line drawings of curved objects, whereas Ding
and Young restricted themselves to polyhedral objects.

Human preference for orthogonal edges is so strong that it can outweigh our
preference for physically possible interpretations. Figure 5.3 shows an example

84 CHAPTER 5. A RICH LABELING SCHEME FOR CURVED OBJECTS

�

�

�
�� �
�����

���
���

����
���

���
�

���
���

���
���

�
��

�
�

�
�
�
�
�
�

�
�
�
�

�
��

���
���

���
���

���
������

����

E

Figure 5.3: An unlikely drawing.

drawing in which all edges are interpreted by a human viewer as orthogonal,
even though this is physically impossible. This drawing does have a physically
possible interpretation in which edge E is not orthogonal.

Before introducing the strict and soft constraints that we use for the inter-
pretation of line drawings of curved objects, we introduce some notation. If L
is a line segment in the drawing, then orth(L) means that L is the projection
of a 3D orthogonal edge. A vertex is known as a cubic corner if it is a trihedral
vertex at which three orthogonal edges meet.

5.3 Planarity Constraints

Consider a 3D edge E formed by the intersection of two surfaces S, T . We say
that S is locally planar along E if the tangent plane to S at each point of E
is identical. Planar surfaces are necessarily locally planar, but a curved surface
may also be locally planar. As an example, consider surface B in Figure 5.2,
which is locally planar along edge E, since it has an invariant tangent plane
along the whole length of E.

A surface-normal discontinuity edge (a convex, concave or occluding edge) is
formed by the intersection of two surfaces S, T . A line L which is the projection
of a surface-normal discontinuity edge has a semantic label +,−,← or →, as
illustrated in Figure 5.4(a). We also label each side of L by a planarity label p
(for planar) or c (for curved) to indicate whether S, T are locally planar or not.
At an occluding edge, one of the surfaces, say T , is invisible. The planarity label
of S is written on the side of the line onto which the surface S projects and the
planarity label of T on the other side. This is illustrated in Figure 5.4(b): the
rightmost label p indicates that the hidden base of the cylindrical part of the

5.3. PLANARITY CONSTRAINTS 85

�
�

�
��

�
�

�
����
��

����
����

����+−

(a)

�
�

�
��

�
�

�
����
��

c

c

c pcp
p

p

(b)

Figure 5.4: Illustration of (a) semantic line labels and (b) planarity labels.

object is locally planar. An extremal edge is the locus of points of intersection
of the line of sight with a curved visible object surface. The projection of an
extremal edge, known as an extremal line, is labelled by a double-headed arrow,
as shown in Figure 5.4(a). By convention, both sides of an extremal line are
always labelled c, as shown in Figure 5.4(b).

Let Tan be the set of tangent planes to all the locally planar segments of
edges of 3D object(s) depicted in a drawing. We say that the drawing satisfies
the GVA (general viewpoint assumption) if no small perturbation in the position
of the viewpoint changes the configuration of the drawing (presence and types
of junctions, presence of straight lines and parallel lines). Under the GVA, the
viewpoint cannot lie in any tangent-plane in Tan.

Having introduced the new planarity labels, we can now give the planarity
constraints which relate planarity and semantic line labels. These are given in
Figure 5.5. Under the GVA, the projection of a 3D edge E is a straight line if
and only if E is a straight edge. The first constraint in Figure 5.5 simply says
that a curved line cannot be the projection of the intersection of two locally
planar surfaces. The second constraint is simply our convention that both sides
of an extremal line are labelled c. The third constraint is a translation of the
straight-edge formation assumption.

The last three planarity constraints in Figure 5.5 (showing a phantom, a
3-tangent and a curvature-L junction respectively) allow us to deduce that a
surface is curved. Consider a 3D point P at which a surface-normal discontinuity
edge E intersects an extremal edge Eext, and let S be the surface in which the
extremal edge lies and TP the tangent plane to S at point P . By the definition
of an extremal edge, the viewpoint lies on plane TP . If S were locally planar
along E, then TP would be the tangent plane to this locally planar segment of
E, which would contradict the GVA. This reasoning allows us to deduce the c
labels shown in the last three planarity constraints in Figure 5.5. There are three
distinct constraints depending on whether the extremal edge Eext or part of the
surface-discontinuity edge E is occluded. The dot represents a discontinuity of
curvature between the projections of E and Eext. These planarity constraints
are valid even in the case of objects with tangential edges and surfaces [34].

Applying the line-labelling catalogue to the drawings in Figure 5.2 and
minimizing the number of phantom junctions, produces the correct semantic

86 CHAPTER 5. A RICH LABELING SCHEME FOR CURVED OBJECTS

L

L curved

=⇒
c

or c

L ��
�� =⇒

c
c Whether L is curved

or straight

L
L straight

+/− /←
=⇒ p

p Under the straight-edge
formation assumption

���
+ �

��

+
L or L =⇒ c

•

L1 L2

=⇒
•

cc x1 x2
x1 = x2 ∈ {c,p}

orth(L1)=orth(L2)

•��
��

=⇒
•

c

Figure 5.5: Planarity constraints.

5.4. CONSTRAINTS FROM ORTHOGONAL EDGES 87

labelling of both drawings. Applying the planarity constraints then allows us to
identify certain surfaces as locally curved. Since planar surfaces are common in
man-made objects, it is natural to then try to maximize the number of planar
surfaces in our interpretation of a drawing. However, simply maximizing the
number Np of p labels is not always sufficient to determine the correct planarity
labelling: for example, applying this criterion to the drawing in Figure 5.2(a)
does not allow us to distinguish between the two labellings c

p and p
c for the edge

separating faces A and B.
Considering the drawing as a planar graph G, the faces of G are projections

of visible partial surfaces of a 3D object. A face F ofG can only be the projection
of (part of) a planar surface if all its planarity labels are p. We say that F is
locally planar if all its planarity labels are p (and curved otherwise). Maximizing
the number of faces of G which are locally planar is an extra criterion which,
for example, allows us to find the correct planarity labelling of the drawing
in Figure 5.2(a). Maximizing the number Nlpf of locally planar faces of G
and maximizing the number Np of p labels are complementary criteria in the
sense that no drawing exists with two planarity labellings L1, L2 such that
Nlpf (L1) > Nlpf (L2) and Np(L1) < Np(L2). Therefore, the criterion Np +Nlpf

produces a partial order which refines the partial orders defined by the two
individual criteria Np and Nlpf .

Note that the planarity label pair of a curved line L can change as we walk
along L, since a surface may be partially curved and partially planar. Such
transitions can occur in C∞ surfaces, meaning that there is no detectable trace
of the transition in the drawing. We give an example in Section 5.5. Such
undetectable c-p transitions do not affect the above discussion.

5.4 Constraints from Orthogonal Edges

It is well known that identifying a labelled junction as the projection of a cubic
corner allows one to calculate the 3D orientation of the three faces that meet
at the corresponding vertex [130, 89, 166] (Section 4.6). This section shows
that we can extend this to curved objects by determining certain information
about the surfaces which meet at viewpoint-dependent vertices, based only on
the assumption that the 3D edge E is orthogonal.

Consider the first constraint shown in Figure 5.6, reading the implication
from left to right. It concerns a labelled 3-tangent junction formed by the
projection of a curved orthogonal edge E which is the intersection of a curved
surface Sc with a planar surface Sp. Let P represent the 3D point at which the
tangent plane to Sc on E passes through the viewpoint, and let TP represent this
tangent. If n is the normal to the planar surface Sp, then by the orthogonality
of E, n is parallel to TP . It follows that the projection of n in the drawing is
parallel to the extremal edge (which is the projection of TP). We symbolize the
direction of the projection of n by a short arrow next to the p on the right-hand
side of Figure 5.6.

Similar constraints exist and are given in Figure 5.6 for curvature-L junctions

88 CHAPTER 5. A RICH LABELING SCHEME FOR CURVED OBJECTS

•
�

��
��

+

p

⇐⇒
•

p→

•
�

or −��
��

p

⇐⇒
•

p←

�
+

p

⇐⇒
p→

Figure 5.6: Gradient-direction constraints assuming that the surface-normal
discontinuity edges are orthogonal. The ⇐ implications are consequences of the
GVA.

and phantom junctions. The arrowhead indicates the direction of n. By con-
vention, the 3D orientation of n, the normal to the planar surface Sp, is always
towards the viewpoint. This convention means that in the second constraint,
whether E is a concave or an occluding edge, the gradient-direction label is iden-
tical (i.e. in both cases the arrow points to the left in the second constraint of
Figure 5.6). For the phantom junction shown in Figure 5.6, the gradient direc-
tion can only be determined accurately if the position of the phantom junction is
precisely known. However, this is an important constraint when read from right
to left, since it allows us to locate phantom junctions at the points where the
gradient-direction is tangential to the line. The gradient direction is invariant
on a planar surface under orthographic projection. Under perspective projec-
tion the gradient directions of a surface meet at a vanishing point; at least two
gradient directions are required to locate the vanishing point of the normals to
a planar surface.

There are also gradient-direction constraints at projections of trihedral ver-
tices V at which surfaces and edges meet non-tangentially. Let L1, L2, L3 be the
projections of edges E1, E2, E3 meeting at V , and let F12 be the face bounded
by E1 and E2. The normal n to F12 is parallel to E3 in 3D if and only if both E1

and E2 are orthogonal at V . Thus, invoking the GVA, which says that parallel
lines in a drawing are projections of parallel 3D lines, we can deduce that the
gradient direction of F is parallel to L3 iff both E1 and E2 are orthogonal at V .

For each line segment L in a drawing we create a boolean variable orth(L),

5.4. CONSTRAINTS FROM ORTHOGONAL EDGES 89

which takes on the value true if and only if L is the projection of an orthogonal
edge segment. We then impose the strict constraints

orth(L) ⇒ the gradient-direction constraints apply at each
3-tangent, curvature-L and phantom junction on L

together with the soft constraint which imposes a penalty of wo if orth(L) =
false. Following the discussion in Section 5.3, there is also a penalty of wph for
each phantom junction, a penalty of wp for each c planarity label, a penalty of
wlpf for each face which is not locally planar, and a penalty wt for each planarity
label transition (p to c) between the two ends of a line segment. The objective
function to be minimized is the sum of these penalties. Strict constraints can be
considered as soft constraints whose penalty when they are violated is ∞ [115].

In order to determine the relative weight to be given to planarity and or-
thogonality, we constructed drawings having two interpretations, one involving
more planar faces and the other involving more orthogonal edges. Figure 5.7(a)
shows an example. We can interpret this as a box in which all faces are pla-
nar except the top face F or as a box in which F is planar but two hidden
faces are curved. In the first interpretation, two edges, E1 and E2, are non-
orthogonal, whereas the second interpretation involves only one non-orthogonal
edge, namely the hidden vertical edge. Since it is the first interpretation which
seems to be the most natural, we conclude that human vision prefers planarity
to orthogonality, i.e. wp > wo. Figure 5.7(b) shows another example: we tend
to see F as planar and the two edges marked * as non-orthogonal, rather than
F as a curved surface and the edges marked * as orthogonal. However, when
other visual cues come into play, our preference for planarity can be overrid-
den. Figure 5.7(b) is an example. There are two possible interpretations, one in
which face F is planar (in which case edge E is not orthogonal) and another in
which E is orthogonal (in which case F is not planar). The latter interpretation
appears the most natural, but this is probably because the resulting 3D object
has an extra axis of symmetry compared to the former interpretation.

Maintaining arc consistency during search is a standard technique for solving
Constraint Satisfaction Problems. Arc consistency has recently been general-
ized to Soft Constraint Satisfaction Problems [50, 115] (Chapter 8), which has
led to the development of efficient general-purpose intelligent complete search
algorithms for soft constraint satisfaction [53].

The gradient-direction/semantic-label constraints in Figure 5.8 show the
tight relationship between the gradient direction and the semantic label of a
line L, whenever L is the projection of an orthogonal edge. The arrows repre-
sent any gradient direction which points away from L in the first constraint and
towards L in the second constraint. Line L is shown curved but could be straight
or curved in the opposite direction. At a point P on an orthogonal edge E at
which surfaces S1, S2 intersect, the normal n1 (n2) to surface S1 (S2) is parallel
to the tangent plane to surface S2 (S1) at P . If E projects into a convex (con-
cave) line L, it follows that the projections of n1, n2 point away from (towards)
L. Since, by convention, occluding lines have the same gradient-direction labels

90 CHAPTER 5. A RICH LABELING SCHEME FOR CURVED OBJECTS

��
��

�

��
��

�

��
��

�

��
��

� F

E1 E2

(a)

��
����

��

��
� ��

�

����

(b)

*
*

F

F

E

�
�
�
�

�
�
�
�

(c)

Figure 5.7: Examples of ambiguous pictures. Human vision appears to prefer
planarity to orthogonality in (a) and (b) but orthogonality to planarity in (c).

p ↑ or

p ↓
=⇒ +

(a)

p ↑
or p ↓ =⇒ −/→ /←

(b) s p
p���

���
α

β
=⇒

−π
2 < α < π

2 ⇔ −π
2 < β < π

2

s = + if −π
2 < β < α < π

2

s ∈ {−,→,←} if −π
2 < α < β < π

2

Figure 5.8: The gradient-direction/semantic-label constraints: (a) assuming
that the edge is orthogonal; (b) for any edge.

5.5. EXAMPLES OF DRAWING INTERPRETATION 91

(a)

(b)

��

����

����

�������

��������
�������

������

������

Figure 5.9: Drawings of curved objects with orthogonal edges ((b) is a version
of a drawing in [149]).

as concave lines, this proves the correctness of the gradient-direction/semantic-
label constraints given in Figure 5.8.

One consequence of these constraints is that a closed curve L which is the
projection of a locally planar orthogonal edge cannot have the same semantic
label around the whole of L. If L is not a closed curve but instead terminates
at a 3-tangent or curvature-L junction, then the gradient-direction constraints
allow us to determine the gradient direction. This, in turn, provides us with
the semantic label at each point of L via the gradient-direction/semantic-label
constraints.

In Figure 5.8(b), surfaces S1, S2 are both locally planar and hence L is
necessarily straight. The right-hand end of L is further away from the viewer
than the left-hand end if and only if −π

2 < α < π
2 and if and only if −π

2 < β < π
2 .

Furthermore, the dihedral angle between the tangents to surfaces S1 and S2 is
greater than π if α > β, equal to π if α = β and less than π if α < β. The
constraints of Figure 5.8(b) follow immediately.

5.5 Examples of Drawing Interpretation

Figure 5.9 shows two objects containing only orthogonal edges. Consider the
drawing in Figure 5.9(a). Using the semantic labelling scheme [109], the pla-
narity constraints and the gradient-direction constraints, we obtain the labelling
given in Figure 5.10 (with semantic labels not shown to avoid cluttering up the
figure). This interpretation simultaneously maximizes the number of orthog-
onal edges, the number of p labels and the number of locally planar surface
patches. All surfaces are correctly labelled as planar or curved and the direc-
tions of the projections of the normals to the planar surfaces have been correctly

92 CHAPTER 5. A RICH LABELING SCHEME FOR CURVED OBJECTS

c
p↑

c
p↑

c
p↑

c
p↑

c
p↑

c
p↑

c
p↑

c
p↑

c
p↑

c
p↑

c
p↑

c
↑p

c
↑p

c
p↑

c
p↑

c
p↑

c↑p

cc cc cc

cc

cc

cc cc cc

cc

cc

X

Y

Figure 5.10: The drawing of Figure 5.9(a) with planarity labels and gradient
directions.

5.5. EXAMPLES OF DRAWING INTERPRETATION 93

J

K

L1

L2

↑

↑

↑

↑

p↑ p

p

p

p

p

p
p

p
p↑

↑p
p

p↑

p ↑p

↓p

��

�������

�������

������������

������������

������������

����������

����������

Figure 5.11: The drawing of Figure 5.9(b) with planarity labels and gradient
directions.

determined. This provides a much richer interpretation than the semantic la-
belling alone. The third gradient-direction constraint (Figure 5.6) allows us to
precisely locate the two phantom junctions X , Y shown in Figure 5.10 at which
there is a transition from an occluding to a convex label.

Consider the drawing in Figure 5.9(b). Using the semantic labelling scheme,
the planarity constraints and the gradient-direction constraints, we obtain the
labelling illustrated in Figure 5.11. To avoid cluttering up the figure, c labels
and semantic labels are omitted.

Line L1, which extends from junction J to junction K, provides an exam-
ple of planarity-label transitions. Starting at junction J , the actual planarity
label pair changes from c

p to c
c to p

p . These changes are not detected by our
constraints, which strictly speaking only inform us about planarity labels in the
vicinity of junctions or along the length of straight-line segments.

If a surface is planar along two edges which meet at a vertex, then we can
propagate the gradient direction through the corresponding junction. For ex-
ample, in Figure 5.11, the vertical gradient direction (deduced from the vertical
extremal line) propagates through junction K to the straight segment of L1.
However, neither planarity nor orthogonality propagates through junctions, ex-
cept at 3-tangent junctions (as shown in Figure 5.5).

The closed curve L2 in Figure 5.11, which we see as a long hole running down
the handle of the object, provides a challenge for our constraints. It is the skew
symmetry of L2 whose axis coincides with the axis of symmetry of the whole
object which allows us to identify L2 as a hole in a planar surface rather than a
separate object lying on top of a larger object. Such reasoning is necessary before

94 CHAPTER 5. A RICH LABELING SCHEME FOR CURVED OBJECTS

we can even find the correct semantic labelling, which is clearly a precondition
to apply the planarity constraints and gradient-direction constraints. Naively
minimizing the number of phantom junctions leads us to an incorrect semantic
labelling. The gradient-direction/semantic-label constraints nevertheless allow
us to deduce that a semantic labelling of L2 involving no phantom junctions
is incompatible with the hypothesis that L2 is the projection of an orthogonal
locally planar curve.

We performed trials on 28 drawings containing a total of 229 visible faces.
Exactly 94.4% of orthogonality labels and 95.2% of planarity labels were cor-
rectly and unambiguously identified. Full details can be found in [45].

5.6 Complete 3D Reconstruction

We have seen that a rich labelling scheme, together with simple local geometrical
constraints, allows us to obtain a considerable amount of information about the
3D object depicted in the drawing. This information goes much further than
traditional semantic line labels (occluding, convex, concave, extremal) but does
not in itself provide a complete 3D reconstruction. For this, we can look for
various other common features of man-made objects, such as cubic corners and
symmetry.

The drawing in Figure 5.2(a) contains 19 visible cubic corners, all of which
involve edges which are parallel to just three orthogonal axes. Some workers
apply the simple assumption, under orthographic projection, that if a large
number of the lines in a drawing are parallel to one of just three principal
directions, then these directions are projections of three orthogonal axes [103].
Another approach, described in detail in Chapter 4, searches for the largest set
of mutually compatible cubic corners. For example, in Figure 5.2(a), junctions 1
and 2 cannot both be projections of cubic corners since two pairs of lines meeting
at the junctions are parallel but the third line is not. Furthermore, junction 3
cannot be a projection of a cubic corner since it does not satisfy Perkins’s
criterion [17, 130]. In the case of Figure 5.2(a), both approaches allow us to
correctly identify the cubic corners. This, in turn, allows us to calculate the 3D
orientations of all the planar faces of the object (see Chapter 4 for more details).

Figure 5.2(b) contains no cubic corners. Indeed, maximizing the number of
cubic corners leads to an incorrect reconstruction of the object in which J and
K are projections of cubic corners. Although the gradient-direction constraints
tell us that the normal to the leftmost planar face of the object is parallel to
the extremal edges, we require further information to uniquely determine its
3D orientation. This information would be obtained, for example, by assuming
that bilaterally symmetric curves are projections of local surfaces of revolution
[120] or, alternatively, by an objective function which prefers equal angles (such
as the minimum standard deviation of angles function of Marill [111]) or equal
lengths (such as the standard deviation of segment lengths [15]).

5.7. DISCUSSION 95

�
�
�
�
�

A

(a)

B

B′

(b)

C

C′

(c)

Figure 5.12: Examples of viewpoint-dependent (A, B, B′) and viewpoint-
independent (C, C′) junctions.

5.7 Discussion

A viewpoint-dependent junction is a junction which is the projection of a 3D
point whose position varies as a function of the viewpoint. Consider a drawing
of a right cylinder. Let J be a viewpoint-dependent junction (i.e. a 3-tangent or
curvature-L junction) in this drawing, at which an extremal line L1 is tangential
to a line L2 (the projection of a surface-normal discontinuity edge E). In the
case of a right cylinder, J necessarily occurs at a point of maximal curvature of
curve L2, whereas line L1 is straight. All viewpoint-dependent junctions in the
drawings in Figures 5.2 and 5.9 have these properties.

These properties are common at viewpoint-dependent junctions, but neither
is necessary even if E is an orthogonal edge and one of the surfaces meeting at
E is planar. For example, at junction A in Figure 5.12(a), the extremal line
is not straight, whereas in Figure 5.12(b), the curvature of the surface-normal
discontinuity line is not maximal at junction B. Furthermore, a junction at
which a straight line L1 is tangential to a curved line L2 at a point of maxi-
mal curvature of L2 is not necessarily the projection of a viewpoint-dependent
junction. The viewpoint-independent junction C in Figure 5.12(c) is an exam-
ple. Nevertheless, the presence of a straight line L1 and/or a point of maximal
curvature of L2 at a curvature-L junction J increases the likelihood that J is a
viewpoint-dependent junction.

We say that two curve segments are parallel if they can be put in corre-
spondence by a translation and similar if they can be put into correspondence
by a translation followed by a dilation. Under orthographic projection, parallel
(similar) 3D curve segments project into parallel (similar) 2D curve segments.
The presence of two pairs of parallel curve segments at junctions C and C′ (or
at junctions B and B′) in Figure 5.12 indicates that either both junctions are
viewpoint dependent or both junctions are viewpoint independent.

Chapter 6

Depth Recovery Through
Linear Algebra

This chapter provides a summary of the most important results in the use of
linear algebra in determining the realizability of line drawings and recovering
missing depth parameters. The coverage of gradient and dual space is largely
based on Draper’s article [59], and most of the linear constraints for curved
objects were first published in [37].

6.1 Gradient Space and Gradient Directions

Throughout this chapter we assume a left-hand coordinate system, so that larger
values of z represent more distant points. In this section, we assume that the
drawing has been obtained by orthographic projection with the viewpoint at the
point at infinity along the negative z-axis. This means that a 3D point (x, y, z)
projects into the point (x, y) in the picture plane. The equation of a plane in
3D space is given by

ax + by + cz + d = 0. (6.1)

To emphasize that a plane has only three degrees of freedom, we can rewrite
this as

z = px + qy + r, (6.2)

where p = −a
c , q = − b

c , r = − d
c . The space (p, q, r) is the dual space of

the original (x, y, z) space and was first introduced in the interpretation of line
drawings by Huffman [76]. Mackworth [107] used gradient space (p, q) to check
the realizability of line drawings as projections of polyhedra. Gradient space
can be seen as an orthographic projection of the dual (p, q, r) space, in the same
way that the picture space (x, y) is an orthographic projection of 3D (x, y, z)
space.

A special case occurs when c = 0 in Equation (6.1), which corresponds
to a plane parallel to the z-axis. These planes are mapped to (∞,∞,∞) in

97

98 CHAPTER 6. DEPTH RECOVERY THROUGH LINEAR ALGEBRA

dual space. However, under orthographic projection, the general viewpoint
assumption (GVA) says precisely that no planes in a 3D scene are parallel to
the line of sight (the z-axis) and hence c �= 0.

Points (p, q, r) in dual space correspond to planes in the original (x, y, z)
space (and vice versa). Consider a 3D line L which is the intersection of two
planes whose corresponding points in dual space are (p1, q1, r1) and (p2, q2, r2).
Points on L lie on both these planes and hence satisfy Equation (6.2) for
(p1, q1, r1) and (p2, q2, r2). After elimination of z, we obtain

(p1 − p2)x + (q1 − q2)y + r1 − r2 = 0. (6.3)

Let (x1, y1), (x2, y2) be two distinct points on L. Substituting into Equation (6.3)
and eliminating r1 − r2 gives

(p1 − p2)(x2 − x1) + (q1 − q2)(y2 − y1) = 0. (6.4)

The slope of the projection L′ of L in the picture plane is given by (y2 − y1)/
(x2 − x1).

Now consider a line Ld joining points (p1, q1, r1) and (p2, q2, r2) in dual
space. The projection L′

d of Ld in gradient space (i.e. (p, q) space) has a slope
of (q2− q1)/(p2−p1). If we artificially align the p, q axes of gradient space with
the x, y axes of picture space, then Equation (6.4) tells us that L′ and L′

d are
perpendicular. This property can be used, for example, to prove the following
simple lemma (which we already implicitly used in Section 4.7).

Lemma 6.1 Let A,B,C be three planes in (x, y, z) space which intersect at
a point. The gradient (pB, qB) of plane B can be uniquely determined from
the gradients (pA, qA),(pC , qC) of planes A, C together with the orthographic
projections in the (x, y) plane of the lines of intersection LAB and LBC of the
pairs of planes A, B and B, C.

Proof: The projection in the picture plane is illustrated in Figure 6.1(a).
Denote by HAB (respectively HBC) the line in gradient space, passing through
the point (pA, qA) ((pC , qC)) and which is perpendicular to LAB (LBC). Then
(pB , qB) lies at the intersection of HAB and HBC , as shown in Figure 6.1(a).

Another important result, already stated in Section 4.6, is that the ortho-
graphic projection of a cubic corner V , together with its semantic labelling,
uniquely determines the gradients (p, q) of the three surfaces meeting at V .
Drawing analysis in gradient space provides necessary but not sufficient condi-
tions for a drawing to be realizable as an orthographic projection of a polyhedral
scene, due to the fact that the third parameter r is ignored. Gradient-space
analysis was, to a large extent, superseded by Sugihara’s work [155], which in-
volves reasoning in (p, q, r) space and, furthermore, applies equally well to the
case of perspective projection. The gradient direction of a plane P , introduced in
Chapter 5, is the direction in the image plane of the projection of the normal to
P . It is given by tan−1(q

p) and is hence even less informative than the gradient

6.1. GRADIENT SPACE AND GRADIENT DIRECTIONS 99

�
�
�
�
�
�

�
�
�
�
�
�
�
�

��������������

•

•

A
B

C

LAB

LBC

HAB

HBC

(pA, qA)

(pC , qC)

(pB , qB)

. .
. .

.

(a)

�
�
�
�
�
��

��
��

��

�
�
�
��

A
B

C

LAB

LBCLCA

�

�� ��
T

(b)

Figure 6.1: (a) The gradient of plane B is uniquely determined by the gradients
of planes A and C. (b) The gradient direction of B is uniquely determined by
the gradient directions of A and C.

(p, q). Although gradient-directions provide an incomplete description of planes,
we have seen in Chapter 5 how they can be incorporated into a discrete labelling
scheme to enrich the classical semantic labels (convex, concave, occluding, etc.).

A similar result to Lemma 6.1 also exists concerning gradient directions.
If N planar faces meet at a vertex V , then knowledge of the projection of V ,
together with its semantic labelling and the gradient-direction of N − 1 of the
faces, uniquely determines the gradient-direction of the Nth face. We give a
formal proof of this result below for the case of trihedral vertices.

Lemma 6.2 Let A, B, C be three planes in (x, y, z) space which intersect at a
point V . The gradient direction αB of plane B can be uniquely determined from
the gradient directions αA, αC of planes A, C together with the orthographic
projections in the (x, y) plane of the lines of intersection LAB, LBC , LCA of
each pair of planes.

Proof: Let P be a plane z = z0 which does not pass through V . Let T be the
triangle formed by the intersection of P with planes A,B,C. The three sides
of T are each perpendicular to the gradient direction of the corresponding face.
To see this, let TA be the side of T lying in face A, and let n=(p, q, r) be the
normal to face A. Let (e, f, 0) be the unit vector parallel to TA. Then, since TA

and n are orthogonal, we have (p, q).(e, f) = (p, q, r).(e, f, 0) = 0.
Figure 6.1(b) shows the projections into P of the intersection lines LAB,

LBC , LCA together with triangle T . The slopes of two of the sides of T clearly
uniquely determine the slope of the third side TB (shown as a dashed line in

100 CHAPTER 6. DEPTH RECOVERY THROUGH LINEAR ALGEBRA

Figure 6.1(b)). The gradient direction of B (shown as a short arrow in the
figure) is then perpendicular to TB.

Given three non-collinear 3D points lying on the same plane, the parameters
(p, q, r) of the plane (as in Equation (6.2)) can easily be eliminated. This leaves
a linear system whose only unknowns are the depths z (or inverses of depths
in the case of perspective projection). Dual space and gradient space were
introduced for the analysis of drawings of planar-faced objects, but they are
not so obviously useful when object surfaces can be arbitrary curved surfaces.
However, in the more general case of curved objects, linear constraints often
exist, such as the coplanarity of 3D points deduced from the presence of straight
lines in the drawing. As we will show in the rest of this chapter, these constraints
can be exploited to obtain a linear system in which the unknowns are the depths
z (or inverses of depths in the case of perspective projection) of 3D points.

6.2 Linear Constraints and Curved Objects

Drawings of curved objects often contain many linear features: straight lines,
collinear or coplanar points, parallel lines and vanishing points. These linear
features give rise to linear constraints on the 3D position of scene points which
can be resolved using standard linear programming techniques. An important
characteristic of this approach is that instead of making a strong assumption,
such as that all surfaces are planar, only very weak assumptions, which disal-
low coincidences and highly improbable objects, need to be made to be able to
deduce planarity. The linear constraints, combined with junction-labelling con-
straints, are a powerful means of discriminating between possible and impossible
line drawings. They provide an important tool for the machine reconstruction
of a 3D scene from a human-entered line drawing.

Human vision combines evidence from many sources in order to choose a
unique interpretation for a line drawing. Information extracted from straight
lines, collinear points, parallel lines and junctions in the drawing is rapidly
integrated to reduce the inherent ambiguity due to the loss of one dimension
when a 3D scene is projected into a 2D drawing. The speed of human visual
interpretation of line drawings is no doubt partly due to the abundance of such
linear constraints in most drawings encountered in practice.

Pioneering work on machine interpretation of line drawings concentrated
almost exclusively on assigning semantic labels to lines in drawings of polyhedral
scenes [20, 75, 87]. Sugihara [154, 155] was able to state necessary and sufficient
conditions for a drawing to be the projection of a polyhedral scene by using not
only these semantic labelling constraints but also constraints derived from the
assumption that all faces were planar. He expressed these planarity constraints
as linear equations between variables corresponding to the parameters of object
faces. Constraints derived from a given semantic labelling of the drawing were
expressed as linear inequalities. The result was a standard linear programming
problem.

6.2. LINEAR CONSTRAINTS AND CURVED OBJECTS 101

�
�

�
� �

�

�
�

A

B

C

+

��

Figure 6.2: Example of a phantom junction C at which a transition occurs
between + and → labels.

Unfortunately, the restriction to planar-faced objects means that Sugihara’s
work cannot be directly applied to line drawings of curved objects. Neverthe-
less, the spirit of his work can be retained whenever linear constraints, such
as collinearity or coplanarity, are applicable. Many drawings of curved objects
contain straight lines, collinear points, parallel lines or coplanar points, which
are, in fact, the key to the interpretation of the drawings. Given an arbitrary
2D curve there is an infinite family of 3D curves which project into it, whereas
a straight line in a drawing can, barring coincidences, be assumed to be the
projection of a straight line in 3D.

In this chapter, a drawing consists of a set of junctions linked by a set of
possibly curved lines. Unlike Sugihara, who used the assumption of polyhedral
objects, object faces can be of any C3 shape. The aim will, therefore, not be
to determine the 3D equations of faces, but simply to determine the positions
in 3D space of each vertex projecting into a visible junction in the drawing.
The following sections give the mathematical derivation of linear constraints
in the case of both orthographic and perspective projection. The power of
linear constraints and semantic labels can be demonstrated by their ability to
distinguish between possible and impossible drawings.

Drawings are assumed to be perfect projections, from a general viewpoint,
of scenes containing objects composed of opaque C3 surfaces separated by C3

surface-normal discontinuity edges meeting non-tangentially at vertices. Straight
edges are assumed to be formed by the intersection of locally planar surfaces.
This means that objects behave locally as polyhedra in the vicinity of ver-
tices and straight edges. However, no extra restriction needs to be imposed,
such as trihedral vertices [20, 75] or the cyclic-order property [145, 146]. The
propagation of semantic labels for lines is sufficient to identify certain well-
known examples of drawings as impossible, such as the impossible forks shown
in Figure 2.5.

Under the assumption that straight lines are projections of straight edges
formed by the intersection of locally planar surfaces, label transitions on straight
lines are illegal. Nevertheless, when the surfaces which meet to form an edge
may be curved, undetectable transitions from convex to occluding labels are

102 CHAPTER 6. DEPTH RECOVERY THROUGH LINEAR ALGEBRA

�� ��
��

��
��

��
��

��

�� ��

A

B

C

D

E

F G

+ +

Figure 6.3: An object which is impossible because coplanarity constraints imply
that points A, B, E, D should be collinear.

possible and are known as C junctions or phantom junctions. Figure 6.2 shows
such a transition at point C lying somewhere between A and B.

Figure 6.3 illustrates an object which is impossible because of coplanarity
constraints (which are given in detail below in Section 6.4). It is possible to
deduce that A, B, C, D, E are all coplanar by the form of the corresponding
junctions in the drawing and by the assumption that surfaces are planar in the
vicinity of straight lines. Similarly, the 3D points A, B, F , G, E, D must be
coplanar. Together, these two facts imply that points A, B, E, D are collinear
since they all lie on the intersection of these two planes. However, the projec-
tions of A, B, E, D in the drawing are clearly not collinear. The following
section gives a formal mathematical statement of linear constraints that can
be used to demonstrate the impossibility of drawings such as Figure 6.3, the
Penrose triangle or Escher’s ‘Belvedere’. The main aim of these constraints is
to allow a machine vision system to interpret line drawings of real 3D scenes
by determining the position in 3D of object vertices. The fact that these con-
straints can successfully distinguish between possible and impossible drawings
demonstrates their power but is not their main purpose.

6.3 Formulation of Linear Constraints

A perspective projection is assumed with focal length f . Note that an ortho-
graphic projection produces slightly different constraints, which are given below
in Section 6.5. Let (X,Y, Z) represent the 3D scene coordinates and (x, y) the
2D image coordinates. Under perspective projection,

(x, y) = (Xf/Z, Yf/Z). (6.5)

The unknowns of the problem are the Z-coordinates of each junction in the
drawing together with the semantic labels of each line end. Each line end must
be assigned a semantic label such as concave, convex, occluding or extremal.
The two ends of the same curved line do not necessarily have the same label,

6.3. FORMULATION OF LINEAR CONSTRAINTS 103

as was illustrated by the example of Figure 6.2. Semantic labelling of drawings
of curved objects is discussed extensively elsewhere in this book, and we do not
repeat here the constraints on junction labellings since they are a function of
the different restrictions placed on the shape of objects. Instead we concentrate
on the constraints involving the Z-coordinates of junctions. Note that some
constraints concern both the line labels and the Z-coordinates, meaning that
the line-labelling problem and the determination of the Z-coordinates cannot
be solved independently.

Suppose that the junctions are numbered from 1 to n, and let (xi, yi) be
the image coordinates of junction i and (Xi, Yi, Zi) the scene coordinates of
the vertex which projects into junction i. Under perspective projection, the
constraints give rise to linear equations and inequalities not between the values
Zi, but between their inverses, which we denote by ti = 1/Zi. Three types of
constraint must be expressed between 3D points h, i, j, k in terms of the values
of the variables th, ti, tj , tk:

• Point i is nearer (further) than point j; or i and j are at equal distance
from the projection plane.

• Points i, j, k are collinear.

• Point h lies in front of (behind) the plane of points i, j, k, or points h, i,
j, k are coplanar.

The constraint that point i is nearer than point j is encoded by ti > tj and
equidistance of i and j from the projection plane is encoded by ti = tj .

It is easily shown that points i, j, k are collinear if and only if

djkti + dkitj + dijtk = 0,

where dij = xi − xj (and similarly for djk and dki) unless xi = xj = xk, in
which case dij = yi − yj.

In Figure 6.4(a), four 3D points h, i, j, k are shown. The unit vectors ei,
ej , ek are the orientations in 3D space of the lines hi, hj, hk. As a concrete
example, we can consider ei, ej , ek to be the orientations of the tangents to the
three edges leaving vertex h in the direction of points i, j, k. Each of hi, hj, hk
is shown as a broken line since there may be no continuous straight edge joining
h to i, j, k. Points i, j, k may even be vanishing points rather than vertices.
Point j in Figure 6.4(b) is an example of a vanishing point. In Figure 6.4(b), the
edge leaving h in the direction of i is curved. Vector ei is the orientation of the
tangent to this curve at h. Since in the drawing the projection of ei coincides
with the 2D line hi, by implicitly using a collinearity constraint we deduce that
ei coincides with line hi in 3D space.

Returning to Figure 6.4(a), a test for whether h is in front of (i.e. on the
same side as the centre of projection of) plane ijk is

(ei ∧ ej).ek < 0, (6.6)

104 CHAPTER 6. DEPTH RECOVERY THROUGH LINEAR ALGEBRA

(a)

����
���2

3

•

•

••i j

k

h

ei ej

ek

(b)

	
	

	4
�

�
�5

3
•

•

•

•

i

j

k

h

ei

ej

ek

�
�

�
�

�
�

�
	

	
	

	
�"""

��

(c)

����
���2

3

•

•

•

•i

j

k

h

ei ej

ek

Figure 6.4: (a) ei, ej , ek are the 3D orientations of the edges meeting at vertex
h. (b) An example of a vertex h involving a vanishing point j. (c) The case in
which the vanishing point j is on the opposite side of vertex h.

assuming a left-hand coordinate system. This is true for any set of four 3D
points h, i, j, k, provided that the triangle of the projections of points i, j, k
has a clockwise orientation in the drawing. An anticlockwise orientation simply
produces a change of sign and test (6.6) becomes (ei ∧ ej).ek > 0.

For notational convenience, let vi represent (xi, yi, f), where f is the focal
length of the perspective projection. In fact, for the constraints given in this
chapter, knowledge of f is not necessary and we can simply set f = 1. By the
definition of the perspective projection in Equation (6.5), (Xi, Yi, Zi) = viZi/f .
It follows that

ei = a(viZi − vhZh),
ej = b(vjZj − vhZh),
ek = c(vkZk − vhZh),

for some strictly positive constants a, b, c. Substituting these equations in (6.6)
and simplifying gives the following criterion for deciding whether h is in front
of plane ijk:

aijkth + ajihtk + ahiktj + ajhkti < 0, (6.7)

where aijk = (vi ∧ vj).vk, with ajih, ahik, ajhk defined similarly. This is a linear
inequality in terms of th, ti, tj , tk. Recall that ti = 1/Zi, with th, tj , tk defined
similarly.

Note that there is a complete change of sign for each point i, j, k whose
projection is actually on the opposite side of the junction. For example, if the
vanishing point j were, in fact, as shown in Figure 6.4(c), then condition (6.7)
would become

aijkth + ajihtk + ahiktj + ajhkti > 0.

6.4. DERIVING LINEAR CONSTRAINTS FROM A DRAWING 105

The final constraint which we have to formulate mathematically is that four
points h, i, j, k are coplanar. This constraint is given by the linear equality

aijkth + ajihtk + ahiktj + ajhkti = 0. (6.8)

6.4 Deriving Linear Constraints from a Drawing

6.4.1 Vanishing Point Constraint

A classical assumption in the machine interpretation of line drawings is to limit
the number of edges which can meet at a vertex. For example, in the case of
trihedral vertices [20, 75], at most three edges meet at each object vertex. A
natural extension of this assumption is to say that at most N (non-collinear)
edges would meet at a point in 3D even if they were extended to any finite
distance in both directions. It follows, from this assumption and the general
viewpoint assumption (GVA), that the intersection ofN+1 extensions of lines in
a drawing provides evidence of a vanishing point. Various authors have described
practical techniques for the detection of vanishing points in images of real scenes
[150, 158].

Vanishing points are a useful visual cue in scenes containing many parallel
lines. All lines converging to a given vanishing point are projections of paral-
lel 3D lines. These 3D lines can be considered to meet at a point which lies at
an infinite distance from the viewer. If we have deduced that the projection of
i is a vanishing point, then we can apply the vanishing-point constraint: ti = 0.

6.4.2 Constraints from Collinearity or Intersections

Section 6.3 described how to express the collinearity of three scene points in
terms of the variables ti. The collinearity constraint simply states that any
three collinear points in a drawing are projections of collinear points in 3D. Note
that one of the points in the drawing may be a vanishing point. It is by the
combined use of the vanishing-point constraint and the collinearity constraint
that we exploit the presence of parallel lines under perspective projection.

The dual of the collinearity constraint states that any three straight lines
meeting at a point P in a drawing are projections of straight lines meeting
at a point q in 3D space. No essentially new constraint is involved, just the
identification of q as a 3D point whose coordinates are to be determined. The
collinearity constraint can then be applied to each of the lines L meeting at q:
if i and j lie on L, then i, j, q are collinear. This dual constraint is redundant
when P is a junction or has already been identified as a vanishing point, but
it is useful, for example, when P is the intersection of the extensions of three
lines in the drawing, as in Figure 6.5. In this case, although it cannot be
determined whether P is a vanishing point or the projection of a hidden or
truncated trihedral vertex, we can still deduce, for example, that i, j, k, l are
coplanar in 3D.

106 CHAPTER 6. DEPTH RECOVERY THROUGH LINEAR ALGEBRA

�
�

�
�

�
�

���������

�
��

�
�
�

�
�

••
•
•

i

j

k

l

P

Figure 6.5: The intersection of three straight lines at P implies that i, j, k, l
are coplanar since lines ij and kl must intersect in 3D space.

6.4.3 T-junction Constraint

A T junction is not necessarily caused by occlusion. Non-occlusion T junctions
occur, for example, at the join of two long rectangular blocks which are stuck
together in the form of a cross [32]. In a drawing of a multi-object scene, a
T junction may be the projection of a point at which two object edges touch. In
a perfect projection of a scene from a general viewpoint, the bar of a T junction
is the projection of a single edge which passes in front of or touches the edge
projecting into the stem of the T.

In order to express this mathematically, we need to distinguish two points
at every T junction, as shown in Figure 6.6(a). The 3D points i and j project
into the same T junction, but they lie on the two different edges. The basic T
junction constraint is thus

ti ≤ tj .

However, if it is known that the two edges do not touch, which is the case, for
example, if either line has been labelled as extremal (i.e ⇐ or ⇒) or the stem
of the T has been labelled as concave (−), then point j is strictly nearer to the
viewer than i:

ti < tj .

On the other hand, if it is known that the two edges do touch, which is the case,
for example, if one half of the bar of the T has been labelled as concave, then
the constraint is clearly

ti = tj .

There are certain restrictions on the application of the collinearity constraint
(described in Section 6.4.2) to T junctions. If the occluding edge E is a straight
edge, then the occluded point i should clearly not be considered to be collinear
with E in 3D space. Similarly, if the occluded edge E′ is a straight edge, then
the occluding point j should not be considered to be collinear with E′. However,
in all other cases, the fact that a T junction is a member of a set of collinear

6.4. DERIVING LINEAR CONSTRAINTS FROM A DRAWING 107

�
�
�
�
�
�
�
�

••i j

Figure 6.6: The two 3D points i, j which project into a T junction.

points (at least two of which are viewpoint independent) implies, under the
GVA, that the two edges touch in 3D and hence ti = tj . The presence in a
drawing of shadows or reflections leaving a T junction can also provide evidence
that the two edges touch in 3D, under an assumption of general viewpoint and
general light-source positions.

To distinguish the two distinct types of T junction (edges touching or not
touching), a semantic label must be assigned to each T junction in a drawing.
The labels ‘=’ and ‘>’ indicate, respectively, that the two edges touch or do not
touch at a 3D point projecting into the T junction. The introduction of a new
label for T junctions (= or >) is a way of ensuring that the determination of
the values of the variables ti remains a classical linear programming problem.

Further constraints on T junctions exist, but only in the case where the
junction is labelled ‘=’ and is part of a pair of junctions joined by a straight
line. Such constraints involving pairs of adjacent junctions are described below,
in Sections 6.4.5 and 6.4.6.

In this section we have assumed that T junctions are caused by an edge
occluding another edge (‘>’) or by two surface-normal discontinuity edges in-
tersecting in 3D space (‘=’). If shadows [38], cracks [173], reflections or other
surface markings occur in a drawing, then this gives rise to yet another type of
T junction, which is neither ‘>’ nor ‘=’.

6.4.4 Convex/Concave Edge Constraints

Various catalogues of legal junction labellings exist for drawings of objects with
curved surfaces [32, 34, 36, 38, 109]. Different assumptions on object shape give
rise to different catalogues. In order to be able to state very general constraints
derived from linear features in a drawing, we do not specify which catalogue
is used. Nonetheless, we suppose that some such catalogue has been applied
to gain certain information about line labels. The constraints described in this
section are derived from knowledge that a line end or a straight line is labelled
as concave (+) or convex (−). Whereas Parodi and Torre [127] deduced line-
label information from knowledge of the directions of the three edges meeting
at a vertex, we deduce information concerning edge directions from knowledge
of line labels. The resulting constraints are not simple inverses of those stated
by Parodi and Torre but also generalizations to curved surfaces meeting at

108 CHAPTER 6. DEPTH RECOVERY THROUGH LINEAR ALGEBRA

non-trihedral vertices.
In order to be able to deduce useful constraints, we require that objects

behave locally as polyhedra in the vicinity of vertices or straight edges. To be
more specific, we require that:

• For any two object surfaces S1, S2 meeting along an edge E incident to a
vertex V , the tangent planes T1, T2 to S1, S2 at V intersect in a straight
line L which is tangential to E at V . (This follows, for example, from the
assumption that objects have C3 surfaces and that no edges or surfaces
meet tangentially.)

• For any straight edge E on a surface S, there is a unique tangent plane to
S along the whole length of E.

Note, however, that we do not need to make the assumption that vertices are
trihedral.

Sugihara [154] formulated a basic constraint on convex/concave edges formed
by the intersection of two planar faces: when two planar faces F1, F2 meet at
an edge E and point i lies on F1 (but not on the plane of F2), then the semantic
label (convex or concave) for E determines whether i lies in front of or behind
the plane of F2. For example, in Figure 6.7(a), the fact that jk is a concave edge
implies that i is necessarily in front of plane jkl. To apply this constraint to
curved objects, we have to consider the polyhedral vertex formed by the tangent
planes to the surfaces, rather than the surfaces themselves.

Suppose that edge E, incident to a vertex j, is the intersection of two surfaces
S1 and S2 which are both visible in a drawing. E is thus either a convex or a
concave edge. Suppose that k lies on the straight line in 3D which is tangent
to E at j. Let T1, T2 be the tangent planes to S1, S2 at j and suppose that
we know that points i, l lie on T1, T2, respectively, but not on their intersection
(which, by the first assumption above, is line jk). Knowing whether E is a
convex or concave edge, we can deduce whether i is in front of or behind the
plane passing through j, k, l (which is exactly T2). Section 6.3 described how to
code such constraints mathematically as strict linear inequalities.

In Figure 6.7(a), the concavity of jk implies that i is in front of plane jkl.
In fact, this remains true even if edge jl is an occluding edge passing in front of
the surface incident to the concave edge, as illustrated in Figure 6.7(b). Indeed,
in this particular case, in which jk is a concave edge and the projections of i
and l lie on opposite sides of the projection of jk, the constraint holds whatever
the labelling of edges ij and jl.

In all, there are four distinct cases to consider, depending on whether edge
jk is labelled convex or concave and whether the projections in the drawing of
points i, l lie on the same or different sides of the projection of jk. These four
cases are illustrated in Figure 6.8: in the two cases shown in Figure 6.8(a), i
must be in front of plane jkl; in the two cases shown in Figure 6.8(b), i must
be behind plane jkl.

There is no upper bound on the number of lines which can meet at the
junction in the drawing. As we walk around the junction in a clockwise direction,

6.4. DERIVING LINEAR CONSTRAINTS FROM A DRAWING 109

(a)

i

j

k

l+
+

−

�
�

�
�

���

���

(b)

i

j

k

l

+ −

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�

�

��
��

��
��

(c)

��
i j

k

l

+

+

�
�
�
��

�
�
�

�
�
�
�

�
�

Figure 6.7: In (a) and (b) the fact that jk is a concave edge implies that i lies
in front of plane jkl. In (c) the convexity of edge jk implies that i lies behind
plane jkl.

(a)

(b)

���
���

����
...

•

•

•

•i

j

k

l
−

���
�
�

�

��..
...

•

•

•

•

i

j

k

l+)

���
���

����
...

•

•

•

•i

j

k

l
+()

���
�
�

�

��..
...

•

•

•

•

i

j

k

l−

*

Figure 6.8: Constraints derived from a convex or concave label for a line end:
(a) i is in front of plane jkl; (b) i is behind plane jkl.

110 CHAPTER 6. DEPTH RECOVERY THROUGH LINEAR ALGEBRA

(a)

(b)

•

• •

•

p
�

��

�
��

i

j k

l

− 11... ��
��

...

•

• •

•

p�
��

�
��

i

j k

l

+����
...

��
��

...

��

•

• •

•

p
�

��

�
��

i

j k

l

+ 1
1... ��

��
...

��

��

•

• •

•

p�
��

�
��

i

j k

l

−����
...

��
��

...
11/

Figure 6.9: (a) i is in front of plane jkl; (b) i is behind plane jkl.

starting from the projection of jk, the first line we encounter is the projection
of the edge whose tangent is ji; walking in an anticlockwise direction, the first
line we encounter is the projection of the edge whose tangent is jl. The only
restriction on the application of this constraint is that the projections of points
i, j, l are not collinear. We use a downward-pointing triangle as a generic label,
which, on a horizontal line, means that the edge which projects into this line
lies on the surface which is visible just below the line. It thus represents any
semantic label (e.g. +, −, →, shadow [38], crack [173], reflection, surface mark,
ramp line [32]) except an occluding edge with the occluding object above the
line (←). This label is not always necessary, as was illustrated by the example
of Figure 6.7(b), in which i lies in front of plane jkl even when jl is an occluding
edge.

To be able to deduce an inequality constraint from a junction, we require
at least one line label (+ or −), together with the three points i, k, l (such
as vertices or vanishing points), which are collinear with the tangents to three
distinct edges meeting at vertex j. If the tangent to an edge at vertex j does
not pass through a vertex or vanishing point, then an artificial point i (or k
or l) can be created on this tangent.

To encode mathematically the fact that an edge is concave (or convex), we

6.4. DERIVING LINEAR CONSTRAINTS FROM A DRAWING 111

(a)

////////

��������

+

p p

i j

k

l

• •

•
•

��

��������

(b)

i j

l

k

• •
−

•

p

•
−

+

�
�

�

Figure 6.10: Inequality constraints at 3-tangent and curvature-L junctions: (a)
i lies behind the plane of jkl; (b) i lies in front of the plane of jkl.

require points i and l which lie on the tangent planes T1 and T2 to the two
surfaces Sl and S2 which intersect to form the edge. If, for example, the first
edge visible in the drawing when leaving jk in an anticlockwise direction is an
edge which occludes surface S2 (e.g. edge jl in Figure 6.7(b)), then we will have
to look further afield to find a point l which actually lies on the tangent plane
T2 to S2. If S2 is locally planar along jk (which is the case, for example, if jk is
a straight edge), then we may be able to find such a point l, lying on T2, on the
tangent to an edge at vertex k. An example is shown in Figure 6.7(c), where
the convexity of edge jk implies that i is behind plane jkl. In generalizing this
constraint, there are again four distinct cases to consider, depending on whether
the edge jk is convex or concave and whether the projections of i and l lie on the
same or opposite sides of the projection of the straight line in 3D space passing
through points j and k. The four cases are shown in Figure 6.9. In the cases
given in Figure 6.9(a), i must lie in front of plane jkl; in Figure 6.9(b) i must
lie behind plane jkl. The only restrictions on the application of this constraint
are that the projections of j and k cannot be T> junctions and that neither i
nor l can be collinear with the two points j and k.

As we have seen in Figure 6.9, it is possible to derive an inequality constraint
for a curved convex/concave edge jk provided jk is a planar curve. This is true
even when jk ends at a 3-tangent or curvature-L junction. Figure 6.10 gives two
examples. In Figure 6.10(a), the convex label for jk implies that the 3D point
i lies behind the tangent plane to the locally planar surface containing points
j, k, l. We can consider this as a special case of the general constraint shown
at the left of Figure 6.8(b). In Figure 6.10(b), the concave label for jk implies
that i lies in front of the tangent plane to the locally planar surface bounded
by edge jk. To find a third point l lying in this plane, we have to consider an
edge kl leaving k rather than j. We can thus consider this as a special case of
the general constraint shown at the left of Figure 6.9(a).

112 CHAPTER 6. DEPTH RECOVERY THROUGH LINEAR ALGEBRA

(a)

�
�
�
�
���

�
��

�
�
��

�
�

!
!
!
!
!
!!

�

i

j k

l

− −

(b)

�
�
�
��

�
�
�

�
�

�
�
��

�
�
�
�
�
��
�
�
�						

i

j
k

l

−
""

�
##�

Figure 6.11: A junction pair in which points i, j, k, l must be coplanar; (b) a
junction pair in which point i must lie in front of plane jkl.

6.4.5 Coplanarity Constraints

Sugihara’s classic work [154, 155] used an assumption of planarity of object
surfaces to deduce information about the relative depth of scene points. Rather
than making the restrictive assumption that objects are polyhedra, we make
only very weak assumptions disallowing coincidences and improbable objects.
We showed in the previous chapter that local planarity can, in fact, be deduced
from these weak assumptions.

As in the previous section, we assume that a straight line L in a drawing is
the projection of a straight edge E formed by the intersection of two surfaces
which are planar in the vicinity of E. Similarly, every junction is assumed to be
the projection of a vertex which behaves locally as a polyhedral vertex. Based
on these assumptions, it is often possible to deduce a constraint concerning the
relative positions in 3D space of E and other edges emanating from the vertices
at either end of E. It is either an equality or inequality constraint depending
on the junction labellings at the ends of L.

In the example in Figure 6.11(a), the occluding and concave edge labels
indicate that the four points i, j, k, l all lie on the same face. The example in
Figure 6.11(b) differs in that the occluding edge label for ji indicates that i is,
in fact, in front of the face on which j, k, l lie. Although in the two examples
given in Figure 6.11 ij and kl are straight edges, this is not necessarily the case.
The edge leaving j in the direction of i (and the edge leaving k in the direction
of l) may be curved. Points i and l may be vanishing points, vertices which
just happen to lie on the tangent to the edge or artificial points (as described
in Section 6.4.4) lying on the tangent to the edge.

Figure 6.12 shows a general coplanarity constraint. In this constraint, the
projections of points i and l may lie on either side of the straight line passing
through the projections of j and k. As in Section 6.4.4, the generic upward-
pointing triangle label on a horizontal line represents any type of edge which
lies on the surface projecting into the region above the line. This label for ij, jk
and kl, together with the local planarity label ‘p’ for jk, indicates that points

6.4. DERIVING LINEAR CONSTRAINTS FROM A DRAWING 113

•

• •

•

p�
��

�
��

i

j k

l
/

11

��

��

��

##... ...

Figure 6.12: The coplanarity of i, j, k, l follows from the fact that jk is a straight
edge.

A B

C

D E

F

+ +

+

+ +

+$
$
$
$
$
$
$
$
$
$%
%
%
%
%
%
%
%
%
%

			

�
�
�
�

��

�
�
�
�
���
�
�
�
�

Figure 6.13: An impossible object since the lines AD, BE and CF , when ex-
tended, should meet at a point, which is not the case.

i, j, k, l are coplanar, since they all lie on the tangent plane to the surface which
is visible above edge jk.

As an example of the use of the coplanarity constraint described above,
consider the drawing in Figure 6.13 (adapted from [152]). Both sides of each
straight line are locally planar by the straight-edge formation assumption. The
coplanarity constraint applied to the straight line DE implies that points A,
D, E, B are coplanar. Similarly, B, E, F , C are coplanar, as are C, F , D,
A. However, it is impossible to find Z-coordinates for points A to F satisfying
these coplanarity constraints. To see this, consider the three lines AD, BE
and CF , which, when extended, should meet at a point, which is not the case.
The coplanarity constraints coded as linear equations thus show that this is an
impossible figure.

Certain coplanarity constraints are clearly redundant and need not be taken
into account. For example, the constraint “i, j, k, l coplanar” provides no infor-
mation if i = l or if i, j, l (or i, k, l) are known to be collinear. Similarly, an
entirely visible planar face bounded by r edges can give rise to a coplanarity
constraint on each set of four consecutive vertices. Since only r − 3 such con-
straints are necessary to establish the coplanarity of all vertices on the face,
three of these constraints are redundant and can be ignored.

Figure 6.14 shows how the presence of occluding labels gives rise to an in-
equality constraint rather than an equality constraint. In Figure 6.14(a), the
fact that ij is the tangent to an occluding edge means that i lies in front of
the plane containing edge jk and tangential to the locally planar surface which
is visible in the drawing above jk. Similarly, in Figure 6.14(b), both i and l

114 CHAPTER 6. DEPTH RECOVERY THROUGH LINEAR ALGEBRA

(a)

•

• •

•

p�
��

�
��

i

j k

l

��

��

��

��

##... ...

(b)

•

• •

•

p�
��

�
��

i

j
k

l

��

����

�� ��
... ...

��

Figure 6.14: The presence of occluding labels imply that i lies in front of
plane jkl.

lie above this tangent plane. The resulting constraint is the same as for
Figure 6.14(a), that i must lie in front of plane jkl.

In Figure 6.14(a), the projections of i and l may lie either above or be-
low the straight line passing through the projections of j and k, whereas in
Figure 6.14(b) the projections of i and l must lie on opposite sides of this line.
In both cases, the constraint does not apply if the projections of j or k are T>

junctions. A reflected version of the constraint in Figure 6.14(a) also exists with
the occluding edge on the right-hand side.

If objects have tangential edges and surfaces [34], then the constraint is less
strong, in that i may be in front of or on plane jkl.

In the constraints given in Figures 6.12 and 6.14, the projections of j and k
need not be adjacent junctions. The constraints still hold even when there are
any number of T junctions or 3-tangent junctions along the projection of edge
jk in the drawing; we only require that the projection of jk be labelled ‘p’ and
� along its whole length.

6.4.6 Hidden-Surface Coplanarity Constraints

Under the more restrictive assumption of trihedral vertices, other constraints
exist in which the plane on which points j, k, l lie is not a tangent plane to a
visible surface, but to a hidden surface. An example is shown in Figure 6.15,
where points i, j, k, l are coplanar: they all lie on the same hidden face.

Figure 6.15 is just one example of a very general constraint given in Figure
6.16. Points i, j, k, l must be coplanar (since they lie on the same tangent plane
to the hidden surface) if the trihedral vertices j and k are joined by an occluding
edge labelled ‘p’, as shown in the figure. Recall that the ‘p’ label written above
jk refers to the hidden surface. The projections of j and k may be any Y or W
junctions, and the projections of i and l may lie on any side of the straight line
passing through the projections of j and k.

It is worth observing that the occluding edge label is inessential in the state-
ment of this constraint; if edge jk has any other label, then i, j, k, l are still

6.4. DERIVING LINEAR CONSTRAINTS FROM A DRAWING 115

�
�
��

�
�
��

i

j k

l

�
�
�
�
�
�

Figure 6.15: An example in which the coplanar points i, j, k, l lie on a hidden
face. Vertices j and k are assumed to be trihedral.

•

• •

•

p�
��

�
��

i

j k

l

������
����

Figure 6.16: If j and k are projections of trihedral vertices, then i, j, k, l are
coplanar.

(a)

•

• •

•

p �
��

i

j k

l

�� ���=x

(b)

•

• •

•

p

i

j k

l

��=x =
−

Figure 6.17: Point i lies in front of or on plane jkl, since the continuation of ij
passes behind the hidden locally planar surface.

116 CHAPTER 6. DEPTH RECOVERY THROUGH LINEAR ALGEBRA

•

• •

•

p �
��

i

j

k

l

=
��
...

•

• •

•

p
�

��

i

j

k

l

=

��
��

...

Figure 6.18: Point i must lie in front of plane jkl, since the continuation of ij
passes behind the visible locally planar surface.

coplanar by the constraint of Figure 6.12. This result follows from the cata-
logue of possible labellings for Y and W junctions as projections of trihedral
vertices [20, 75] as given in Figure 3.2.

Hidden-surface constraints also arise when the bar of a T= junction is joined
to another junction by a line labelled ‘p’ since the continuation of the stem of
the T= junction must pass behind the hidden locally planar surface. In the two
cases shown in Figure 6.17, i must lie in front of or on plane jkl. Furthermore,
if it is known that the label x is −, then the constraint is much stricter: i, j,
k, l must be coplanar. In Figure 6.17(a), the projection of vertex k is any Y or
W junction.

Although the continuation of line ij in Figure 6.18 may touch the hidden
surface, it certainly passes behind the visible locally planar surface. Thus the
constraint in this case is that i lies in front of plane jkl. If tangential edges
and surfaces are allowed, then the constraint is weaker: i lies in front of or on
plane jkl.

The projection of vertex k in Figure 6.18 can be any junction except a
T> junction. Since vertices are assumed to be trihedral, at most three lines meet
at this junction. The downward-pointing triangle label is only necessary when
the projections of i and l lie on the same side of the straight line passing through
the projections of j and k, as shown on the right-hand side of Figure 6.18.

In the constraints given in Figures 6.16, 6.17 and 6.18, the projections of
j and k need not be adjacent junctions. The constraints still hold even when
there are any number of T junctions or 3-tangent junctions along the projection
of jk in the drawing. Reflected versions of the constraints in Figures 6.17 and
6.18 clearly also exist. Note that the constraints in Figure 6.17 and 6.18 do
not hold if j can be a non-trihedral vertex, since in this case i could lie behind
plane jkl.

6.5. ORTHOGRAPHIC PROJECTION 117

6.5 Orthographic Projection

Under orthographic projection, as opposed to perspective projection, the values
to be determined are not the inverses ti = 1/Zi, but the distances Zi them-
selves. It turns out that, to mathematically encode the three basic constraints
(equidistance, collinearity, coplanarity) under orthographic projection, it is suf-
ficient to replace ti by Zi in the equations given in Section 6.3. Thus, the math-
ematical formulation of the constraint that i and j must be equidistant from
the projection plane is Zi = Zj; the constraint that i, j, k must be collinear
is djkZi + dkiZj + dijZk = 0; the constraint that h, i, j, k must be coplanar is
aijkZh + ajihZk + ahikZj + ajhkZi = 0. The coefficients dij and aijk are as de-
fined in Section 6.3. Note that aijk is defined as (vi∧vj).vk, where vi represents
(xi, yi, 1).

In the inequality constraints there is a change of sign due to the fact that the
inequalities concern the Zi rather than their inverses ti. Thus, the constraint
that i must be nearer than j is Zi < Zj ; the constraint that h must lie in front
of plane ijk (where h, i, j, k are as shown in Figure 6.4(a)) is now aijkZh +
ajihZk + ahikZj + ajhkZi > 0.

Under orthographic projection, there are no vanishing points (and hence no
vanishing-point constraint). Parallel lines in 3D project into parallel lines in a
drawing, which can theoretically be detected. Let i, j, k, l be four points in 3D
such that the projections of lines ij and kl are parallel in the drawing. Then
under the GVA, the corresponding 3D lines are parallel, which we can write
mathematically as

dkl(Zi − Zj) − dij(Zk − Zl) = 0,

where dkl, dij are defined as in Section 6.3. Note that this constraint can, in
theory, be applied even when there is no line joining i and j (or k and l) in the
drawing.

If we assign depth labels to straight lines, as proposed in Chapter 4, then a
depth label on a line ij gives rise to a constraint of the form Zi > Zj. If we use
the rich labelling scheme introduced in Chapter 5, then each gradient direction
that has been determined gives rise to a linear constraint. Suppose that i, j, k
are three non-collinear points in 3D such that the plane P passing through i,
j, k has gradient direction α. Recall that tanα = q/p, where the equation of
plane P is Z = pX + qY + r. Eliminating the parameters p, q, r leads to the
linear constraint

bjkZi + bkiZj + bijZk = 0,

where bij = (xi − xj) + (yi − yj) tanα, with bjk and bki defined similarly.
Unfortunately, the identification of a line as the projection of an orthogonal

edge leads to a quadratic, rather than linear, constraint. Similarly, knowing
that two edges are orthogonal leads to a quadratic constraint [117]. However,
the presence of a cubic corner, a vertex h at which three orthogonal edges meet,
can be translated into three linear constraints, provided we have the semantic
labelling of the corresponding junction. Suppose, for example, that lines ih,

118 CHAPTER 6. DEPTH RECOVERY THROUGH LINEAR ALGEBRA

jh, kh meet at a Y(+) junction. Let γij denote the angle between lines ih
and jh, with γjk and γki defined similarly. Then, as observed in Section 4.6,
the angle of inclination θih of line ih to the image plane is given by tan2 θih =
tan γki tan γij − 1. This gives us the linear constraint

Zh − Zi = Dih tan θih,

where Dih =
√

(xh − xi)2 + (yh − yi)2 is the length of ih in the image plane.
Similar linear constraints exist for lines jh and kh.

All other constraints are identical to the perspective projection case. We will
not discuss any further the case of orthographic projection since it produces a
computational problem of exactly the same type as for perspective projection,
namely a line-labelling problem together with a system of linear equations and
inequalities.

6.6 Physical Realizability of Drawings

Sugihara [152, 155] showed that line-labelling constraints, together with linear
constraints, provide necessary and sufficient conditions for a drawing of a poly-
hedral scene to be physically realizable. In [36] we showed that line-labelling
constraints alone provide necessary and sufficient conditions for a drawing to
be physically realizable under the assumptions that object faces are arbitrary
C3 curved surfaces, that vertices are trihedral and that all lines (even straight
lines) can be projections of arbitrary C3 curves. The linear constraints de-
scribed in this chapter complement the line-labelling constraints for curved ob-
jects [36, 109]. They correct the rather unreasonable assumption that a straight
line can be the projection of a curved edge.

It is straightforward to modify the proof given in [36] to show that the line-
labelling constraints together with the linear constraints given in this chapter
provide necessary and sufficient conditions for the physical realizability of a
drawing. They are clearly necessary. Given a legal line labelling and the po-
sitions (Z1, . . . , Zn) of all points projecting into junctions in a drawing, a 3D
scene whose projection is identical to the drawing can be constructed as in [36]
thanks to the large freedom of choice in the shape of object faces and those
edges which do not project into straight lines.

The linear constraints presented in this chapter were inspired by Sugihara’s
[154] constraints for polyhedral objects, but they go further in that they in-
clude constraints on collinear points, parallel lines and hidden faces. Most
importantly, they can be applied without the restrictive assumption of planar
surfaces.

The notion of impossible figure depends on the assumptions we make con-
cerning the objects depicted. For example, the drawing in Figure 6.19 is a legal
projection of a polyhedral object. However, if we impose the extra condition
that all vertices must be trihedral (i.e. formed by the intersection of faces ly-
ing in only three planes), then this is an impossible object. Assuming that the
object is a polyhedron and that B and C are trihedral, vertices A, B, C, D

6.7. THE COMPUTATIONAL PROBLEM 119

����

����

�

�

��
��

��
��

�

�

�����

&
&
&
&

�
�
�
�

'
''
���

A

B

C

DE

F

G

H
I

����

����

�

�

��
��

��
��

�

�

�����

&
&
&
&

�
�
�
�

'
''
���

A

B

C

DE

F

G

H
I

��

��
J

K

L
(a) (b)

Figure 6.19: A drawing which cannot be the projection of a polyhedron with
trihedral vertices.

must all lie on the same hidden planar face. Similarly, vertices A, I, H , G are
coplanar. In Figure 6.19(b) we have added an edge leaving vertex A and parallel
to CD and to HG. Since the projections of JA, CD and HG are parallel in
the drawing, by the GVA we can deduce that JA, CD and HG are parallel
in 3D. It follows that JA lies on both of the planes ABCD and AIHG, and
hence lies on their intersection. A similar argument tells us that DK lies on the
intersection of planes ABCD, DEFG and that GL lies on the intersection of
planes DEFG, AIHG. But then lines JA, DK and GL should intersect at a
point in 3D, which is clearly impossible, since their projections in the drawing
do not intersect.

6.7 The Computational Problem

The constraints described in Section 6.4 when applied to a labelled drawing
produce a set of linear equations

At = 0 (6.9)

and a set of linear inequalities

Bt > 0,
Ct ≥ 0,

(6.10)

where t = (ti, . . . , tn).
Let d = (δ, . . . , δ), where δ is any strictly positive constant. The system

of Equations (6.9) and Inequalities (6.10) has a solution iff the following set of
inequalities, together with (6.9), has a solution:

Bt ≥ d,

Ct ≥ 0.
(6.11)

120 CHAPTER 6. DEPTH RECOVERY THROUGH LINEAR ALGEBRA

This result follows from the size/distance ambiguity inherent in any drawing,
meaning that any solution (t1, . . . , tn) to (6.9) and (6.10) can simply be scaled
up uniformly so as to satisfy (6.11). Thus, the linear constraints applied to a
labelled line drawing produce a standard linear programming problem.

Suppose that, by applying the constraints described in Section 6.4 to a draw-
ing, we have deduced that points A, B, C, D are coplanar, A, B, E are collinear
and B, C, D, E are coplanar. The third of these constraints is redundant since
it could be logically deduced from the other two. In the presence of such lin-
ear dependence between equations in system (6.9), any errors in the position of
junctions in the drawing will mean that the system of equations (6.9) has no
solution. This phenomenon is known as superstrictness. This is an important
problem, since errors are inevitable due to the limited precision of floating-point
numbers stored in a computer.

One solution is a scheme in which the combined system of equations (6.9)
and inequalities (6.11) is replaced by the inequalities

e ≥ At ≥ −e,
Bt ≥ d− e′,
Ct ≥ −e′′,

(6.12)

where e = (ε1, . . . , εn), e′ = (ε′1, . . . , ε′n), e′′ = (ε′′1 , . . . , ε′′n) for some small
εi, ε

′
i, ε

′′
i > 0. It is clearly essential to choose δ > ε′i (for at least one i), otherwise

system (6.12) has a trivial solution in which all points are coplanar. The values
chosen for εi, ε′i, ε

′′
i determine tolerances in the linear constraints, for example,

the extent to which a supposedly planar surface can actually be curved (i.e. the
distance of a vertex from the plane on which it is supposed to lie). The value
chosen for δ, on the other hand, imposes a lower bound on the distance of a
vertex V from a plane P , when it is known that V lies in front of (or behind) P .
To avoid physically unrealizable drawings being accepted as realizable, due to
the tolerances εi, ε′i, ε

′′
i , we recommend choosing δ to be an order of magnitude

greater than all of εi, ε′i, ε
′′
i .

Several different solutions to the superstrictness problem have been pro-
posed. Sugihara [152, 155] deletes picture points until what remains is a max-
imally generically reconstructible substructure. This corresponds to finding a
maximal linearly independent subset of Equation (6.9); a solution t to this sub-
system is then used to determine whether corrections in the positions (xi, yi)
of junctions in the drawing can be made so that the whole system (6.9) has
a solution. There is an O(n3) algorithm to find a maximally generically re-
constructible substructure [78], but there are three disadvantages to Sugihara’s
approach. Firstly, the ‘corrected’ drawing may not have the same basic struc-
ture as the original drawing if the coordinates of picture points are significantly
altered. Secondly, not all points are treated equally. Thirdly, the correction
process is not possible if one of the deleted vertices lies on more than three
non-triangular faces (see [176] or [135] for examples of such drawings).

Superstrictness occurs when there are linear dependencies between the equa-
tions in the linear system. One example is when two faces meet along two

6.7. THE COMPUTATIONAL PROBLEM 121

distinct edges E1, E2. The projections of E1, E2 must be collinear in the pic-
ture. Such a linear dependence is known as a second-order syzygy. Linear
dependencies may also exist between these second-order syzygies, giving rise to
what are known as third-order syzygies. Heyden [73] proposed a scheme for
correcting the coordinates of junctions in a superstrict picture which treats all
points equally. Unfortunately, as for Sugihara’s technique, his scheme does not
work if there are third-order syzygies.

Ros and Thomas [135] use an incomplete local search algorithm to find a
corrected version of an incorrect drawing which minimizes the sum of the squares
of the 2D distances of junctions to their equivalents in the original drawing.
Their scheme can correct all correctable drawings of opaque objects and treats
all points equally, but it is not guaranteed to converge to the global optimum.

By introducing new constraints compared with Sugihara (concerning parallel
lines and collinearity), potential redundancy in system (6.9) is such that the
number of equations may be greater than the total number of variables (even
when all the values of xi, yi, ti are treated as variables). Thus, although the
techniques of Sugihara, Heyden or Ros and Thomas could be used to correct
certain drawings, the inability to find a correction would not imply the physical
impossibility of a drawing.

Whichever technique is used to solve the linear programming problem given
by (6.9) and (6.11), this is only part of the problem. Such a linear programming
problem may have to be solved for each legal labelling of a drawing, of which
there may be an exponential number. Even determining whether a line drawing
of a polyhedron with trihedral vertices has a single legal semantic labelling is un-
fortunately an NP-complete problem [92]. The straight line labelling constraint,
which prohibits label transitions on straight lines in a drawing, implies that the
labelling problem for curved objects with trihedral vertices is also NP-complete,
since it contains the labelling problem for drawings of polyhedral scenes as a
subproblem.

In fact, it was shown in [36] that the realizability problem (the problem
of deciding whether a drawing is realizable as the projection of a 3D scene)
for drawings of curved objects with trihedral vertices is NP-complete under ei-
ther perspective or orthographic projection due to the combination of junction-
labelling constraints and constraints derived from the presence of parallel lines
in 3D (Theorem 9.18). The introduction of additional constraints in this chapter
does not change this result; in the constructions for the proof of NP-completeness
in [36] it is sufficient to avoid the presence of collinear points and straight lines
so that none of the additional constraints applies.

Nevertheless, the local propagation of line labels is a powerful tool in elim-
inating illegal labels for line ends. Furthermore, we have presented the linear
constraints of Section 6.4 in such a way that they can be applied with mini-
mal knowledge of actual line labels. An incomplete algorithm, although very
effective on all the example drawings given in this chapter, is to propagate line
labels through local consistency operations until convergence [55, 160], build
the corresponding linear constraints and solve the resulting linear programming
problem.

122 CHAPTER 6. DEPTH RECOVERY THROUGH LINEAR ALGEBRA

�
�
��

�
�
��

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
��

•

•

•

�− or

��

−
or

+

A B

C

DE

F

G

H

I

Figure 6.20: A figure which is discovered to be impossible by the propagation of
junction-labelling constraints for trihedral vertices followed by the application
of the coplanarity constraint.

As an example, consider the drawing in Figure 6.20, which is a curved version
of the well-known Penrose triangle. Under the assumption of trihedral vertices,
the catalogue of legal junction labellings [32, 109] provides sufficient information
about line labels to deduce that I, F , A, B are coplanar and F , A, B, G are
coplanar, by two applications of the coplanarity constraint given in Figure 6.12.
Thus, I, F , A, B, G are coplanar. By symmetry, G, B, C, D, H are coplanar
and H , D, E, F , I are coplanar. These three planes should then intersect at
a point in 3D space, which implies that the projections of BG, DH and FI,
when extended, should meet at a point in the drawing. This is clearly not the
case. Since the corresponding linear programming problem has no solution, we
can deduce that this is an impossible figure.

This example illustrates the utility of creating artificial points (G, H , I in
Figure 6.20) on tangents to edges. Note that edges FA and AB are not assigned
a unique label after local propagation of constraints; the coplanarity constraint
can nevertheless still be applied since ‘→’ and ‘−’ both imply that the edge lies
on the surface visible below the line.

6.8 Conclusion

The constraints stated in this chapter represent a generalization of known con-
straints for polyhedral objects to the class of objects with curved surfaces. These
constraints are capable of identifying classic examples of impossible figures
involving polyhedra but also many more new examples of impossible figures
involving curved objects. Instead of assuming planarity of surfaces, the con-
straints allow us to deduce planarity from labelled pairs of junctions joined by
a straight line.

Although differentiating between possible and impossible figures is

6.8. CONCLUSION 123

theoretically an NP-complete problem, polynomial-time algorithms for the prop-
agation of semantic labels, together with the linear programming approach
proposed in this chapter, provide a practical (though incomplete) test for the
physical realizability of figures.

The successful integration of information from various sources (junctions,
collinear points, straight lines, vanishing points), in order to recover the depth
of object vertices, can be considered as an essential first step towards a complete
computer vision system which would also incorporate information from other
depth-recovery techniques such as shape-from-shading [74, 110] and stereovision
[64]. The constraints presented in this chapter are based on the assumption
that a given drawing is a perfect projection of a 3D scene. They have direct
applications in the reconstruction of a 3D scene from a user-entered drawing.

Chapter 7

Wireframe Projections

The reconstruction of an object from a single 2D projection of a 3D wireframe
model is a vision problem with applications in CAD/CAM and computer graph-
ics. This chapter describes a technique for the interpretation of wireframe pro-
jections based on assigning semantic and numerical depth labels to lines (first
published in [42]). This method allows us to state necessary and sufficient con-
ditions for the physical realizability of a wireframe projection of a curved object.
The presence of linear features provides further constraints on the positions of
object vertices. For example, each straight line gives rise to a coplanarity con-
straint between a set of object vertices. We show that extra information, such
as vanishing points, parallel lines or user-entered depth-parity information, is
sufficient to uniquely determine the face circuits in wireframe projections of
polyhedra with simple trihedral vertices. In fact, a polyhedron with simple
trihedral vertices can be unambiguously reconstructed from its 3D wireframe
model.

From a more practical point of view, we give junction constraints for wire-
frame projections of curved objects with tetrahedral vertices or with edges and
surfaces which can meet tangentially. We also generalize the constraints be-
tween distant lines, given in Chapter 3, and the rich-labelling constraints, given
in Chapter 5, to wireframe projections of curved objects.

7.1 Introduction

The interpretation of line drawings of opaque objects is a classic problem in
computer vision. Necessary and sufficient conditions have been given for the
physical realizability of line drawings of polyhedral objects [154, 155] and for
curved objects with C3 surfaces [36]. The computational complexity of testing
the realizability of a line drawing has also been extensively studied (see Chapter
9). Although the most general problem is NP-complete [92, 36, 38], the problem
is solvable in linear time under certain restrictions on the drawings (knowledge
of all vanishing points [127, 36], absence of straight lines [34, 36] or possibility

125

126 CHAPTER 7. WIREFRAME PROJECTIONS

of contrast failure between parallel surfaces [38]).
In a line drawing of opaque objects, only visible lines are shown. This is

appropriate for traditional vision applications. However, for the reconstruction
of the 3D shape of a human-entered object-model, a more appropriate input
is a line drawing in which both visible and hidden lines are shown. Let the
depth of a 3D edge E denote the number of surfaces lying between E and
the viewpoint. Visible lines represent edges of depth zero. Sugihara [155] and
Alevizos [5] have studied the interpretation of line drawings in which solid lines
represent edges of even depth and broken lines represent edges of odd depth.
A wireframe projection is a projection of all 3D edges (visible or not) in which
no information concerning the depth of lines is explicitly given. When extra
information is provided in the form of the 3D coordinates of each object vertex,
we call this a 3D wireframe model. The reconstruction of an object from several
wireframe projections has been extensively studied [95, 175], as has the problem
of converting a 3D wireframe model into a surface-based 3D model [4, 82, 99,
103, 112, 147, 170, 171]. Although the reconstruction of a 3D object from a user-
entered wireframe is the most studied problem, other interesting applications
exist, such as the indexing of technical line-drawing databases [157].

In this chapter we study the interpretation of wireframe projections. We give
necessary and sufficient conditions for the physical realizability of a wireframe
projection when no depth information is given (in terms of depth of lines or 3D
coordinates of vertices). These necessary and sufficient conditions involve not
only semantic labels (convex, concave, occluding, extremal), first introduced by
Huffman [75] and Clowes [20] and generalized to wireframe projections by Sugi-
hara [151, 155], but also numerical labels representing the number of surfaces in
front of and behind the corresponding 3D edge. Labelling lines by their depth
was first suggested by Huffman [75], one of the pioneers in this field.

We firstly restrict our study to wireframe projections from a general view-
point of objects with C3 edges and surfaces meeting non-tangentially at trihe-
dral vertices. Later we consider a more general scheme allowing objects with
discontinuities of surface curvature [32, 34] or tetrahedral vertices [165]. Fig-
ures 2.16(a)–(d) show three drawings which require numerical depth labels as
well as semantic labels to demonstrate their non-realizability. Although a consis-
tent labelling exists in terms of semantic labels alone, they are clearly spatially
incoherent.

If the drawing contains linear features such as straight lines, parallel lines
or collinear lines, then further constraints can be deduced concerning the 3D
positions of object vertices. As we saw in Chapter 6, these constraints give rise
to linear equations or linear inequalities between the depths zi of object vertices
(in the case of orthographic projection) or between the inverses ti = 1/zi of
these depths (in the case of perspective projection). In a standard technique,
pioneered by Sugihara [154, 155], a drawing is physically realizable if and only
if the resulting linear programming problem has a solution.

Figure 2.16(e) shows an example of a drawing which has a legal labelling
(both semantic and numerical) but which is impossible by linear constraints.
We assume a general viewpoint and orthographic projection, which imply that

7.2. SEMANTIC AND NUMERICAL LINE LABELS 127

parallel lines in the drawing are projections of parallel lines in 3D. The existence
of a legal labelling follows from the fact that this drawing can be transformed
into a drawing of a cube by changes to positions of junctions that do not alter
the configuration of the drawing. Coplanarity constraints deduced from assump-
tions about the formation of straight edges imply that J , K, L, M are coplanar.
However, using the constraint that parallel lines in the drawing are projections
of parallel 3D edges, it is possible to deduce that K does not lie in the same
plane as J , L, M .

In the machine reconstruction of a 3D object model from a human-entered
drawing, it is essential that the drawing be unambiguous. Wireframe models
are often said to be ambiguous (see, for example, Mortenson [118]) because they
do not contain surface information (as in B-rep models) or volume information
(as in CSG models). However, we will show that wireframe models of polyhedra
containing only simple trihedral vertices are, in fact, unambiguous.

7.2 Semantic and Numerical Line Labels

We make the following simplifying assumptions:

1. Objects are regular solids bounded by C3 surfaces separated by C3 edges
(discontinuities of surface orientation).

2. Object vertices are trihedral, i.e. formed by the intersection of three sur-
faces. The edges and surfaces meeting at a vertex meet non-tangentially.

3. If the scene contains more than one object, then the objects are in a
general relative position: a small perturbation in their relative position
does not alter the configuration of the drawing (such as the presence of
junctions, straight lines or parallel fines).

4. The drawing is a projection of object edges (including viewpoint-dependent
edges such as the side of a cylinder) from a general viewpoint, i.e. a small
perturbation in the viewpoint position does not alter the configuration of
the drawing.

These assumptions exclude certain classes of interesting drawings, such as
those involving objects with smooth edges or non-trihedral vertices. The basic
preliminary results obtained under these simplifying assumptions will serve as
a foundation for work on more complex objects presented later in this chapter
in Sections 7.11–7.13.

Each line L joining two junctions in the drawing can be assigned

1. A semantic label from the six possible labels +, −,←,→ ,⇐,⇒ according
to the form of the 3D edge E projecting into L;

2. A pair of numerical labels m,n representing the number of surfaces m
lying between the viewpoint and E and the number of surfaces n lying
behind E.

128 CHAPTER 7. WIREFRAME PROJECTIONS

(a)

(b)

m,n m, n m, n m, n

+ − ���� ��
��
��
��

�
��

�
���

��
�
��

���			

Figure 7.1: (a) The four distinct line labels; (b) cross-sections of the correspond-
ing 3D edges.

The meaning of the semantic labels +, −, →, ⇒ is demonstrated by their
cross-sections shown in Figure 7.1. In the example cross-sections of Figure 7.1(b),
m = 3 and n = 2 for the lines labelled ‘+’ and ‘−’; m = 3 and n = 3 for the
lines labelled ‘→’ and ‘⇒’. The label ‘+’ means that the two surfaces meeting
at E subtend an angle greater than π when observed from the viewpoint. The
label ‘−’ means that this angle is less than π.

We say that an edge E is visible if there is no surface lying between E and
the viewpoint. An edge which is not visible is called hidden. A 3D edge E
is called convex (concave) if the two object faces which intersect to form E
subtend an angle less than π (greater than π) in the interior of the object. If a
line L labelled ‘+’ (‘−’) is the projection of a visible edge E, then E is a convex
(concave) edge. Note that this is not necessarily the case for hidden edges. In
fact, the label (+,m, n) represents a convex edge if m is even and a concave
edge if m is odd. Similarly, the label (−,m, n) represents a concave edge if m
is even and a convex edge if m is odd.

The semantic label → means that the corresponding edge is the intersection
of two object faces both of which project onto the right-hand side of the line as
we follow the direction of the arrow. The label → represents a surface-normal
discontinuity, i.e. the intersection of two non-tangential object surfaces, whereas
the label⇒ represents a viewpoint-dependent edge (extremal edge) which is the
locus of points at which the line of sight is tangential to an object surface. Again
the object surface projects onto the right-hand side of the line as we follow the
direction of the arrow. For example, a sphere projects into a circle labelled ⇒.
Note that, purely for typographical reasons, extremal edges are labelled by a
double-headed arrow in the figures but by the symbol ⇒ in the text.

Figures 7.2(a) and (c) show two wireframe drawings of objects with holes.
Figures 7.2(b) and (d) are drawings of the corresponding 3D solid opaque objects
in which only visible edges are shown. Note that line AB in Figure 7.2(a) and

7.2. SEMANTIC AND NUMERICAL LINE LABELS 129

�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
��

��
��

��
��

�
�
�
�
�

�
�
�
�
�

��
�

��
�

�� ��

����

1,0
A

B

(a)

�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
��

��
��

�
�
�
�
�

�
�
�
�
�

��
�

(b)

����
����

����
����

0,0

1,1

C D

(c) (d)

Figure 7.2: (a),(c) Two wireframe drawings of the 3D opaque objects illustrated
in (b),(d), respectively.

130 CHAPTER 7. WIREFRAME PROJECTIONS

��
��

��
��

��
��

�
�
�
�
�
�
����

�
�
�
�
��

�
�
�
�
�
��

�
�
�
�!!

�

�
�

�((

�

A

B

C

D

0,0

0,0

0,0

0,0
0,1

0,1
1,0

1,0

+

+

−
−

Figure 7.3: A simple wireframe projection labelled with both semantic and
numerical labels.

line CD in Figure 7.2(c) both represent boundaries of holes and it is the hole
which lies to the right of the line as we follow the direction of the arrow.

Figure 7.3 shows a simple wireframe projection with a legal labelling of each
line segment. According to the labelling of Figure 7.3, we can deduce that the
3D edge CD lies in front of the 3D edge AB. Note that line AB in Figure 7.3(b)
is labelled ‘−’ even though it is the projection of a convex 3D edge since its depth
m = 1 is odd. Junctions in a wireframe projection can be classified as follows.
Let J be a junction at which three lines L1, L2, L3 meet non-tangentially and
let E1, E2, E3 be the 3D edges which project into L1, L2, L3. Assume that the
lines are numbered so that the angles between L1 and L2 and between L2 and
L3 are both less than π. If the angle between L3 and L1 is greater than π, then
J is a W junction, otherwise J is a Y junction. If E1 lies behind the plane of
E2, E3, then J is classified as a W(+) or Y(+) junction, otherwise a W(−) or
Y(−) junction. When two lines cross, they form an X junction. At 2-tangent
and 3-tangent junctions, two or three lines meet tangentially.

Figure 7.4 shows a labelled wireframe projection involving curved lines. In
this figure, junctions have been identified by their junction-type (2-tangent,
3-tangent, W(+), W(−), etc.). Although a labelled wireframe projection is still
ambiguous, since we do not know the depth of any point on any object surface,
the labels provide valuable local shape information at each edge and vertex as
well as topological information concerning object faces.

7.3 Realizability

When three surfaces meet non-tangentially at a point to form a 3D vertex, their
tangents divide space into eight octants. Each octant may be empty or filled with
matter. Figure 3.1 shows the six possible trihedral vertices thus obtained by this
classic technique [20, 75]. (There is, in fact, a seventh vertex which is not shown
since it is simply a reflected version of vertex C). The viewpoint may be situated
in any of the eight octants, including those filled with matter. By exhaustion,
we obtained the list of all semantically and numerically labelled projections of
the vertices in Figure 3.1 from all possible viewpoints. For example, vertex B in

7.3. REALIZABILITY 131

���������������

W(+)

W(+)

W(−)

Y(+)

X(�=)

X(�=)

3-tangent

3-tangent
3-tangent

3-tangent

2-tangent

0,0

0,0

0,0

0,0

0,0

0,1

0,1

0,1

0,1

0,1

1,0
1,0

0,2

0,2

0,3

1,1

1,1

+

+

+

++

+

− −

����

����

��
$$

��
��

��
��

����

���
�
���
�

�������
�

Figure 7.4: An example of a labelled wireframe projection.

132 CHAPTER 7. WIREFRAME PROJECTIONS

Figure 3.1 projects into the eight labelled junctions of Figure 7.5(a). To obtain
the numerical labels, we assume that any number of object surfaces can lie in
front of or behind the vertex. Thus the numbers m,n are arbitrary non-negative
integers. A physical realization of each of these eight labellings is shown in the
wireframe projection of a holed cube shown in Figure 7.5(b). The complete
catalogue of labelled junctions representing projections of trihedral vertices is
given in Figures 7.6 and 7.7 under the headings W(+), W(−), Y(+), Y(−),
X(=), snowflake.

Even if the drawing contains only a single object, one edge may pass in front
of another without intersecting it in 3D space. The resulting junction is known
as an X(�=) junction (as opposed to an X(=) junction, which is the projection of a
vertex at which two edges intersect, such as vertex C in Figure 3.1). An example
of an X(�=) junction is shown in Figure 7.4. We call the projection of vertex D
in Figure 3.1 a snowflake junction. Note that certain workers have chosen not
to include the vertices which project into X(=) and snowflake junctions in the
list of possible vertices.

The distinction between W(+) and W(−) junctions and between Y(+) and
Y(−) junctions was first made by Parodi and Torre [127]. We can classify,
for example, a W junction as W(+) or W(−) if we have information about
the relative directions of the corresponding 3D edges, obtained from vanishing
points. If such information is not available, then the set of labellings for a
W junction is simply the union of the sets of labellings for W(+) and W(−)
junctions. Purely for compactness of presentation, we have omitted from the
list of legal labellings for Y, X and snowflake junctions those labellings that can
be obtained by a simple rotation of those given in Figures 7.6 and 7.7. After
incorporating these rotated versions, a Y(+) junction, for example, has exactly
the same number of labellings as a W(+) junction.

Finally, curved surfaces give rise to viewpoint-dependent junctions involving
projections of extremal edges. Examples of the resulting types of junction,
known as 2-tangent and 3-tangent, are illustrated in Figure 7.4. The legal
labellings of 2-tangent and 3-tangent junctions are listed in Figure 7.8. At a
3-tangent junction J , two of the lines meeting at the junction form a C3 curve L
which passes through J , whereas the third line L′ terminates at J and exhibits
a discontinuity of curvature with L. Line L′ is shown as a horizontal straight
line in Figure 7.8 but may be curved [32, 109]. Again purely for compactness of
presentation, we have also omitted a reflected version of the 3-tangent junction
in which line L′ goes off to the right instead of to the left. In the catalogue
of labelled junctions in Figures 7.6–7.8, the numbers m and n are non-negative
integers. A further unary constraint exists on each line label (s,m, n). This
unary constraint, which follows directly from the reasonable assumption that
the viewpoint lies outside all objects and that no object is of infinite extent, can
be stated as follows:

Parity constraint: If s=‘+’ or ‘−’, then m+n is odd; if s=‘→’ or ‘⇒’, then
m+ n is even.

If we assume that the wireframe projection is a projection of the whole 3D

7.3. REALIZABILITY 133

�
�
��

+

+ −
m,n m, n

m, n

�
�
��

+

!!
))

����

m,n

m, n+ 1
m+ 1, n

�
�
��+

����

��
��

m,n

m, n+ 1

m+ 1, n

�
�
��

+

��
��

!!
))m,n

m, n

m+ 1, n

�
�
��

−

))!!

��
��

m,n

m, n+ 1

m,n

�
�
��

−

��
��

����

m,n

m, n+ 1

m+ 1, n

�
�
��

−
����

))!!

m,n

m, n+ 1
m+ 1, n

�
�
��+

−
−

m,n

m, n

m, n

(a)

�
�
�
�
�
�

�
�
�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

)!!
�
�

���� ����

�
�

!!
)

+

+

+
+

−
−

−

−

1,0
1,0

1,0
2,0 2,0

1,1 1,12,1 1,2

0,2 0,2

0,1
0,1

0,1

(b)

Figure 7.5: (a) The labelled junctions which can occur in a wireframe projection
of vertex B in Figure 3.1; (b) a wireframe projection (of an object with a vertical
hole) demonstrating the physical realizability of each of these labellings.

134 CHAPTER 7. WIREFRAME PROJECTIONS

W(+)

�
�
���

�
��

m,n

m, n+1

m,n
!!

)) ((��
+ �

�
���

�
��

m,n

m, n

m, n

+

− −

�
�
���

�
��

m+1, n

m, n+1

m,n
!!

))
����

+

�
�
���

�
��

m,n

m, n+1

m+1, n((��
����

+

W(−)

�
�
���

�
��

m,n

m+1, n

m, n
!!

)) ((��
− �

�
���

�
��

m,n

m, n

m, n

−
+ +

�
�
���

�
��

m,n+1

m+1, n

m, n
!!

))
����

−

�
�
���

�
��

m,n

m+1, n

m, n+1((��
����

−

Y(+)

*
*
**

m,n

m, n

m, n

+
+

+

*
*
**

m,n

m, n

m+1, n

��
��

��

+

Y(−)

*
*
**

m,n

m, n

m, n

− −

−

*
*
**

m,n

m, n

m, n+1

��
��

��

−

Figure 7.6: Catalogue of labelled W and Y junctions in wireframe projections.

7.3. REALIZABILITY 135

X(=)
����
��
��

+

−
m,n

m, n

m, n+1

m+1, n

����
��
��

−

+

m,n

m, n

m+1, n

m, n+1

����
��
��

−

+

m,n+1

m+1, n

m, n

m, n

����
��
��

+

−
m+1, n

m, n+1

m,n

m, n

X(�=)

m �= p

x

y

x

y

m, n

p,m+n−p

p,m+n−p

m, n

m ≤ p

x

u

x

u

m, n

p+1,m+n−p

p+1,m+n−p

m, n+2

p ≤ m

x

u

x

u

m, n

p,m+n−p+1

p,m+n−p+1

m+2, n

m ≤ p

v

u

v

u

m, n

p,m+n−p

p+2,m+n−p

m, n+2

p ≤ m

v

u

v

u

m, n

p,m+n−p

p,m+n−p+2

m+2, n

v ∈ {→,⇒}

u ∈ {↑,⇑}
x, y ∈ {+,−}

snowflake

&
&
&
&
&
&&+

+
+
+
+
++

+

−
+

−

+

−

m,n

m, n

m, n

m, n

m, n

m, n

&
&
&
&
&
&&+

+
+
+
+
++

+

−��

��

��

��

m+1, n

m, n+1

m+1, n

m, n+1

m,n

m, n

Figure 7.7: Catalogue of labelled X and snowflake junctions in wireframe pro-
jections.

136 CHAPTER 7. WIREFRAME PROJECTIONS

2-tangent

m,n+1

m+1, n

m+1, n

m, n+1

3-tangent

����
����

m,n

m, n

m, n+1
+

����
����
m+1, n

m, n

m, n+1

+

����
����

m,n

m, n

m+1, n
−

����
����
m,n+1

m,n

m+1, n

−

Figure 7.8: Catalogue of labelled 2-tangent and 3-tangent junctions in wireframe
projections.

7.3. REALIZABILITY 137

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�

X

A B

C

DE

F

0,0

0,0

0,0

0,0

0,0

0,0

0,10,1
++

��
��

��
��

		
��

��		

Figure 7.9: An example of an impossible wireframe projection.

scene, in the sense that all 3D edges and surfaces are completely visible and not
clipped by the picture boundary, then we have the following stronger constraint.

Outer-boundary constraint: all lines on the outer boundary of the wireframe
projection are labelled (↑, 0, 0) or (⇑, 0, 0), since they correspond to occluding
edges of objects.

As an example of the strength of these constraints, consider the wireframe
projection in Figure 7.9. Its boundary has been labelled in accordance with the
outer-boundary constraint. From the list of labellings for W junctions, we see
that each of the lines AD, BE, CF must have the label (+, 0, 1) or (−, 1, 0), and
hence two of these lines must have the same label. Without loss of generality,
suppose that lines AD and BE are both labelled (+, 0, 1). But then the labelling
of junction X is illegal according to the catalogue of Figure 7.7. Similarly,
each of the wireframe projections in Figure 2.16(a),(c),(d) are also physically
impossible, since none of them has a semantic and numerical labelling satisfying
the above constraints. There is also another constraint which is necessary when
a wireframe projection can be decomposed into several connected components.
To state this new constraint, we require the following definition.

Definition 7.1 In a wireframe projection (considered as a planar graph G),
let R be a connected region (i.e. face of G) containing holes H1, . . . , Hg (i.e.
connected components of G entirely surrounded by R). The frontier of R is
defined as the list of line segments forming the outer perimeter of R (visited in
clockwise order) together with the lists of line segments forming the perimeters
of H1, . . . , Hg (each visited in anticlockwise order).

Region constraint: If line segments L1, L2 form part of the frontier of the
same connected region R, then fR(L1) = fR(L2), where fR(L) is the number of
surfaces projecting into the region to the right of the line L and is given by:

fR(L) = m+ n+ 1 if L is labelled (+,m, n) or (−,m, n);

138 CHAPTER 7. WIREFRAME PROJECTIONS

0,0 + + 0,0

0,0
����
����

0,0
����
����

0,0
����
����

0,0
���� 0,0

����

R

L1

L2

Figure 7.10: An impossible wireframe projection. For example, the labelling
shown violates the region constraint on lines L1, L2 of region R.

fR(L) = m+ n+ 2 if L is labelled (↑,m, n) or (⇑,m, n);
fR(L) = m+ n if L is labelled (↓,m, n) or (⇓,m, n).

Note that the region constraint is redundant if L1 and L2 belong to the
same connected component of the wireframe projection. This is because, by
construction of our catalogue from projections of physically realizable vertices,
the region constraint holds for lines L1 and L2 meeting at a junction (and
forming part of the frontier of the same region) and hence, by induction, for
such lines L1 and L2 joined by a sequence of junctions. Nevertheless, the region
constraint is essential. Figure 7.10 shows an example of an impossible wireframe
projection whose impossibility would not be detected if the region constraint
were not applied.

Note that it can easily be shown that the parity constraint is redundant if
the outer-boundary and the region constraints are both applied.

Definition 7.2 A labelling of a wireframe projection is legal if each junction
labelling occurs in the catalogue of Figures 7.6–7.8 and the outer-boundary and
region constraints are also satisfied.

Theorem 7.3 A line drawing of curved objects is realizable as the wireframe
projection of a 3D scene satisfying conditions 1, 2, 3, 4 (given in Section 7.2)
if and only if it has a legal labelling.

Proof: The catalogue was constructed by listing all types of 3D vertices allowed
by conditions 1, 2, 3, 4 and studying all possible projections from different
viewpoints. It follows immediately that each junction in a wireframe projection
must have a labelling in the catalogue. This shows that the catalogue represents

7.3. REALIZABILITY 139

a necessary condition for realizability. Similarly, the necessity of the outer-
boundary and region constraints have also been shown above.

To show that the existence of a legal labelling is a sufficient condition for
realizability, note firstly that all labellings have been included in the catalogue
because they are projections of allowed vertices. Therefore, taken separately,
all labelled junctions are realizable as projections of 3D vertices satisfying con-
ditions 1, 2, 3, 4. It remains to show that we can join these vertices together to
form a 3D object. Consider the drawing as a partition of the plane into non-
intersecting regions. For each region A, calculate NA, the number of surfaces
which project into A. This number is well defined by the region constraint.
Lay NA rubber sheets of the same 2D shape as A on top of each other and
on region A in the drawing. For each line segment L in the drawing, create a
convex, concave, occluding or extremal edge according to the semantic label s
of L at the depth given by the numerical label m,n of L as follows: if s is ‘+’
or ‘−’, then this means creating a convexity or concavity in the rubber sheet
which lies at depth m + 1; if s is ‘↑’ or ‘⇑’, then this means joining the rubber
sheets lying at depths m+ 1 and m+ 2 in the region to the right of L to create
either a surface-normal discontinuity edge or an extremal edge. The rubber
sheets partition 3D space into non-overlapping subsets. It only remains to spec-
ify which subsets should be filled with matter and which left empty. For any
region R of the drawing, there will be matter between sheets at depth m = 2i
and m = 2i+ 1 (for all i). The parity constraint ensures that the resulting 3D
scene constructed from a wireframe projection will be of finite depth.

Not only does Theorem 7.3 generalize Sugihara’s groundbreaking work [151]
to curved objects, but we have also considerably simplified the expression of
his original constraints. As an example of the use of Theorem 7.3, consider the
wireframe projection of Figure 7.11(a) (adapted from an example given by Ernst
[61]). The given labelling is legal, and hence this is a physically realizable wire-
frame projection. The corresponding opaque object is shown in Figure 7.11(b),
and a method of constructing it from a flexible tube with triangular cross-section
is shown in Figure 7.11(c).

In a wireframe projection of an entire but isolated object (or a set of objects
each of which is wholly visible) we can easily identify the outer boundary B.
Given a semantic labelling of the drawing, we can calculate for each region A
the number of surfaces NA which project into A by the following algorithm.
Trace a straight-line segment L from A to any point on B, choosing the angle
of L so that L does not pass through any junction. Without loss of generality,
suppose that L leaves A horizontally to the right. Let Ndown (respectively Nup)
be the number of lines that L crosses which are labelled ↓ or ⇓ (respectively ↑
or ⇑). Then

fR(L) = 2(Ndown −Nup).

It follows that in a complete semantic and numerical labelling of the drawing, the
value of n in the numerical labelling m,n of any line is redundant since it can be
deduced fromm and the semantic labelling. This generalizes a result first proved

140 CHAPTER 7. WIREFRAME PROJECTIONS

(a)

��
��0,0

��
��

0,0

��������
1,1

��������1,1����
0,0 ���� 0,0

�
�

0,0

�
� 0,0

+
0,1

−
1,0

−
1,0

+
0,1

(b) (c)

���
�

��
""

���
��

Figure 7.11: (a) A legally labelled wireframe projection, (b) the corresponding
opaque object, (c) constructing the object.

7.4. ALL WIREFRAMES ARE AMBIGUOUS 141

by Williams [177] for wireframe projections of smooth curved objects with no
surface-normal discontinuity edges. The labelling of wireframe projections using
a combination of semantic labels and the single numerical depth label m was
first suggested by Huffman in his seminal paper [75].

7.4 All Wireframes Are Ambiguous

It is well known that wireframe projections can be ambiguous [112, 118]. In this
section we prove a negative result concerning the ubiquity of ambiguity, which
will help us to put into perspective the positive results of later sections.

Theorem 7.4 (Depth-reversal theorem) Consider a legal labelling of a wire-
frame projection P . If we have no depth information (such as the identification
of a W junction as a W(+) or a W(−) junction), then another legal labelling of
P can be obtained by the following depth-reversal operation: (1) change all ‘+’
labels to ‘−’ and vice versa and (2) change all numerical labels m,n to n,m.

Proof: The proof is trivial by exhaustion over all labellings in the catalogue.
For example, the first labelling for the W(+) junction in Figure 7.6 is trans-
formed into the first labelling for the W(−) junction by the above operation.
It is trivial to check that the outer-boundary and region constraints cannot be
invalidated by the depth-reversal operation.

When the object represented by the wireframe projection is a cube, then
this result corresponds to the famous Necker cube ambiguity. Interestingly, no
junction labelling in our catalogue can be transformed into itself by the depth-
reversal operation. This leads to the following result.

Lemma 7.5 The only physically possible wireframe projections which are not
subject to a depth-reversal ambiguity are those involving no junctions and in
which all lines are labelled ‘→’ or ‘⇒’.

Theorem 7.6 All physically possible wireframe projections are ambiguous.

Proof: Lemma 7.5 tells us that the only case to consider is when the wireframe
projection contains no junctions. But in this case the outer boundary must
consist of one or more closed curves. A closed curve C may be labelled ‘→’ or
‘⇒’. For example, a circle may be the projection of a sphere or a disk-shaped
object.

Imagine a drawing consisting of n mutually intersecting circles. There are
at least 2nn! interpretations of the drawing as a wireframe projection of a 3D
scene, since each circle could be the projection of either a sphere or a disk and
there are n! possible depth orderings of the n objects. There is another form
of systematic ambiguity in wireframe projections which we call matter/space
ambiguity. This occurs when it cannot be determined whether a subset of 3D

142 CHAPTER 7. WIREFRAME PROJECTIONS

(a)

�
�

�
�

�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
� �

�
�
�
�

�
�
�
�
�
�
�

�
� �

�
S1

S2

S3

a

b

c
d

e

f

g

h

i

j

(b)

�
�
�
�

�
�
�
�

�
�
�
�S4

S4

Figure 7.12: S1, S2, S3, S4 are examples of faces.

space bounded by a set of surfaces represents an object or a hole. For example,
in a wireframe projection consisting of just two concentric circles, the inner
circle could represent a sphere in front of or behind another larger sphere, or it
could represent a hole inside an outer sphere.

7.5 Identifying Faces

An essential part of the interpretation of a wireframe projection is the identifi-
cation of object faces. First of all we require a formal definition of a face.

From our assumptions on object shape in Section 7.2, a 3D edge E is the
intersection of two 3D surfaces with distinct surface normals at every point of
E. Each edge has a direction. As we walk along E in this direction and on the
exterior of the object, let SL(E) represent the surface on our left and SR(E)
the surface on our right.

Definition 7.7 Let B = (El, . . . , Er) be a circuit of 3D edges such that, for
i = 1, . . . , r, Vi is the endpoint of Ei and the start point of Ei+1 (where Er+i

is understood to mean E1). Then B is a 3D face boundary if, for i = 1, . . . , r,
Ei+1 is the first edge leaving Vi, which lies to the right of Ei, on SR(Ei).

By this definition, SR(Ei) = SR(Ei+1) at each Vi, and hence B is a boundary
of the face which lies to its right.

Definition 7.8 A face of a 3D object is a closed connected C3 surface patch P
bounded by non-intersecting 3D face boundaries B1, . . . , Bh for some h ≥ 0.

If the face is planar, then one of B1, . . . , Bh is the outer boundary and the
others are boundaries of holes. For curved surfaces, no such distinction can be

7.5. IDENTIFYING FACES 143

made. For example, the curved surface of a cylinder has two circular 3D face
boundaries, neither of which is the outer boundary. A sphere has a single face
with no 3D face boundary (i.e. h = 0 in Definition 7.8). Note that a face may
touch itself at a point (as does surface S1 in Figure 7.12(a)) or along an edge (as
does surface S4 in Figure 7.12(b)). According to Definition 7.8, surfaces S2 and
S3 of Figure 7.12(a) cannot be merged to constitute a single face. Furthermore,
the 3D face boundary of S1 is necessarily (a, b, c, d, e, f , g, h, i, j); it is not
possible to interpret (e, f , g, h) as a hole boundary and (a, b, c, d, i, j) as an
outer boundary.

Definition 7.9 A face circuit in a wireframe projection is a circuit of line
segments which are the projection of the 3D face boundary of an object face.

The identification of face circuits is a major step in converting a wireframe
model into a surface-based model such as a B-rep [103, 147, 170, 171]. In
fact, we will show that face circuits can be unambiguously deduced from the
labelling of a wireframe projection. Each labelled junction in Figures 7.6–7.8 is
the projection of a 3D vertex. (In fact, each labelled junction corresponds to two
distinct vertices due to the matter/space ambiguity, but such ambiguity does not
affect face circuits.) By reconstructing a 3D vertex projecting into each labelled
junction, we deduced the face-circuit information given in Figures 7.13–7.15.
In these figures, thick lines represent lines present in the wireframe projection,
whereas thin lines represent fragments of face circuits. The face-circuit line
drawn on the left (right) of a line L labelled ‘+’ or ‘−’ corresponds to the face
projecting into the region to the left (right) of L. For a line labelled ‘↑’, the two
face-circuit lines are both drawn to the right of L: the face-circuit line which is
nearer to (farther from) L corresponds to the face which is nearer to (farther
from) the viewpoint. For brevity of presentation, X(�=) junctions are not given
in Figure 7.14. The presence of a X(�=) junction on a line L has no effect on
the face-circuit lines of L. Note that since extremal lines (i.e. lines labelled ⇑)
are not projections of 3D edges, they do not belong to any face circuit. This
explains why we do not need to include 2-tangent junctions in Figure 7.15.
For clarity of presentation, the numerical labels are not shown on the lines in
Figures 7.13–7.15, but can be read off directly from the corresponding labelled
junction in Figures 7.6–7.8.

Theorem 7.10 Given a legal labelling of a wireframe projection, we can uni-
quely determine the face circuits of the corresponding 3D scene in linear time.

Proof: Denote the wireframe projection by P . Each junction in a legal labelling
of P uniquely determines face-circuit fragments, as illustrated by Figures 7.13–
7.15. It is then possible to determine complete face circuits by concatenating
these fragments. There is no possible ambiguity in the face circuits in the
construction. In the case of curved objects, Theorem 7.3 guarantees that a 3D
scene exists which projects into P .

144 CHAPTER 7. WIREFRAME PROJECTIONS

�� ���� ��
!!

) ((�
+

�
�

�
�

�
��

�
��

+

− −
��

�
���

�
�
�

!!
)

����

+ �
�� ��
�

�� ((�
����

+

�� �
�

�
��

!!
) ((�−

�
�

�
�

�
��

�
��

−

+ +
��

�
�
��

�
�
�

!!
)

����

− �
�
� �
�

�
�� ((�
����

−

+ +

+

*
*

*
*

�
�

�

+

*
*

*
*

− −

−

*
*

*
*

�
�

�

−

*
*

*
*

W(+)

�
���

�� �
���

�� �
���

�� �
���

��

W(−)

�
���

�� �
���

�� �
���

�� �
���

��

Y(+)

+
++

,
,,

+
++

,
,,

Y(−)

+
++

,
,,

+
++

,
,,

Figure 7.13: Catalogue of W and Y junctions with face-circuit fragments.

Figure 7.14: Catalogue of X and snowflake junctions with face-circuit fragments.

7.5. IDENTIFYING FACES 145

3-tangent

��
��

+ ����

��
��

+����

��
��

− ����

��
��

−����

3-tangent

Figure 7.15: Catalogue of 3-tangent junctions with face-circuit fragments.

�
�

�
��

��������

-
-
--

	
	

		

�
�
�
�
�
��

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

��

�
�

�
�

�
�

�
��

+

+ +

+
+

+−

))

��
��

��

���� !!��

����

		
		

(a)

�
�

�
��

��������

-
-
--

	
	

		

�
�
�
�
�
��

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

��

�
�

�
�

�
�

�
��

�
�
�
��

&
&
&
&
&&

�
�

										

�
�
�
��

+
+
+
+
+
+
+
++

+
+
+
+
+
+
+
++

�
�
�
�
�
�

�
�
�
�
�
��

��

�
�
��

						

&
&
&&�

�
�
��

(b)

Figure 7.16: (a) A legally labelled wireframe projection; (b) its face circuits
derived from the catalogue of Figures 7.13–7.15.

Figure 7.16 shows an example of the determination of face circuits of a
wireframe projection. The wireframe projection in Figure 7.16(a) has only two
legal labellings. One legal labelling is shown in Figure 7.16(a), and the other is
its depth reversal. For clarity of presentation, the numerical labels have been
omitted (although they are essential in eliminating certain physically impossible
labellings). Using the face-circuit constraints given in Figures 7.13–7.15, we
easily obtain the face circuits shown in Figure 7.16.

As another example, consider again the wireframe projection of Fig. 7.11(a).
From the legal labelling given in the figure, the catalogue of Figure 7.15 allows
us to deduce that the corresponding object has just two 3D face boundaries.
In fact, as can be seen in Figure 7.11(c), this object bas a single face and is a
version of the Möbius strip with a triangular cross-section.

Our approach consists in finding all possible semantic and numerical la-
bellings of a wireframe projection (of which there may be an exponential num-
ber) and then determining the face circuits for each such legal labelling. This
can be compared with the traditional face-based approach [112, 147, 170, 171].
For example, Shpitalni and Lipson [147] determine a set of possible face cir-
cuits and then find maximal consistent sets of face circuits. Their algorithm

146 CHAPTER 7. WIREFRAME PROJECTIONS

has worst-case time complexity which is exponential in the number of putative
face circuits, which is itself a potentially exponential function of the size of the
drawing. We have thus reduced a doubly exponential complexity to a simple
exponential complexity. Liu et al. [105] eliminate many physically impossible
face circuits using properties derived from the planarity of faces, but this means
that their system can only identify faces in a drawing of a curved object after
the user has provided a drawing of a polygonal approximation of the object.

However, Definition 7.8 tells us that the projection of a face is, in fact, a
set of face circuits. In order to identify projections of faces, rather than just
face circuits, we use the same construction as in the proof of Theorem 7.3.
Suppose that we are given a legally labelled wireframe projection with regions
R1, . . . , Rt. For each region Ri we can easily determine the total number of
faces f(Ri) projecting into Ri. We can then, for each Ri, create f(Ri) copies
Ri,1, Ri,2, . . . of Ri, which we call patches. To group together patches belonging
to the same face it suffices to apply the following rule until convergence: patches
Ri,u, Rj,v are merged whenever (1) Ri, Rj are adjacent regions separated by a
line L with numerical label (m,n) and u = v ≤ m or f(Ri)−u = f(Rj)− v < n
(i.e. Ri,u, Rj,v correspond to the same face which either passes in front of or
behind the 3D edge projecting into L) or (2) i = j, u = m + 1, v = m + 2,
where region Ri has a line L with label (⇒,m, n) on its boundary (with Ri to
the right of L as we follow the direction of the ⇒ arrow). Each patch Ri,u, is a
subset of a face (the projection of a face into region Ri). The set of patches thus
represents an oversegmentation of the 3D object surfaces. Two adjacent patches
separated by a line L can be merged if L is the projection of a 3D edge lying
on neither of the patches (case (1) above). Two patches can also be merged if
they correspond to the same 3D face which folds over itself to form an extremal
edge (case (2)).

7.6 Common-Surface Constraints

Instead of calculating face circuits from legal labellings, it is sometimes possible
to deduce face-circuit information directly without exhausting over all legal la-
bellings. We will show in this section that face-circuit fragments can be directly
determined given information concerning pairs of adjacent junctions. This infor-
mation may be obtained, for example, from vanishing points or by applying local
consistency operations (Section 8.3) to the labelling constraints of Section 7.3.

Remember that W and Y junctions can be classified as + or − depending on
the relative 3D orientations of the edges which meet at the vertex which projects
into junction J . Knowledge of the vanishing points of the three lines which meet
at J is sufficient to classify J as + or − [127]. The following theorem tells us
that knowing whether two W/Y junctions joined by a line are classified as the
same or opposite sign allows us to determine two distinct triples of consecutive
lines in face circuits.

Consider a pair of junctions (J1, J2) joined by a line where each of J1, J2 is
either a W or a Y, as illustrated in Figure 7.17. We call this a W/Y junction

7.7. COPLANARITY CONSTRAINTS 147

+
+

+
+

+
+

,
,

,
,

,
,

+
+

+
+

+
+

,
,

,
,

,
,1

2

3

4

5

J1 J2

α

β γ

δ

Figure 7.17: A generic W/Y junction pair (J1, J2). Note that lines 1-5 may be
curved and the angles α, β, γ, δ may also be acute or reflex.

pair. Each of the lines 1–5 may be straight or curved and there may be any
number of X(�=) or 3-tangent junctions on line 3 (but no X(=) junctions). Let
nrefl(J1, J2) be the number of the angles α, β, γ, δ which are reflex (i.e. greater
than π); let n3t(J1, J2) be the number of 3-tangent junctions lying on line 3;
let n+(J1, J2) be the number of the junctions J1, J2 which are + (i.e. W(+) or
Y(+)).

Theorem 7.11 (Common-surface constraint) Let (J1, J2) be a W/Y junction
pair in a wireframe projection. If p = (nrefl(J1, J2) + n3t(J1, J2) + n+(J1, J2))
mod 2, then both (1, 3, 5− p) and (2, 3, 4 + p) are triples of consecutive lines in
a face circuit, where line numbers are as in Figure 7.17.

Proof: The result follows by simple exhaustion over all legal labellings of
junction pairs followed by reconstruction of the corresponding surfaces as in the
proof of Theorem 7.10.

It is important to note that, by our assumption that object edges are surface-
normal discontinuities, we have implicitly disallowed a concave/convex transi-
tion on an edge. An example of such a transition is point P in Figure 7.18. In
fact, the faces which intersect to form the edge are tangential to P [34]. Theorem
7.11 is no longer valid if +/− transitions can occur on line 3 of Figure 7.17.

7.7 Coplanarity Constraints

The presence of straight lines in a wireframe projection can provide informa-
tion about the 3D positions of object vertices, provided we make the following
assumption about object shape.

Straight-edge formation assumption: Any straight object edge is formed
by the intersection of two locally planar surfaces.

148 CHAPTER 7. WIREFRAME PROJECTIONS

P

+

−

(a) (b)

Figure 7.18: (a) A wireframe projection involving a +/− semantic label transi-
tion at P ; (b) a view of the corresponding opaque object.

This assumption was first stated in [37] in the context of the interpretation of
line drawings of opaque objects. It is clearly not always valid in man-made ob-
jects, but it allows us to extend techniques developed for polyhedral objects to a
large class of curved objects. Under this assumption, neither 3-tangent junctions
nor +/− transitions (as in Figure 7.18) can occur on straight lines. Most im-
portantly, together with the general viewpoint assumption that we have already
made, this new assumption means that straight lines in a wireframe projection
can provide coplanarity constraints on edges. For example, the straight-edge
formation assumption implies that if line segments L1, L2, L3 are consecutive
line segments in a face circuit and L1, L2, L3 are straight lines, then the 3D
edges E1, E2, E3 projecting into L1, L2, L3 are coplanar. (Even if L1 and L3 are
curved, we can still obtain a constraint, but this time involving the tangents to
E1 and E3 at the vertices where they meet E2. See Chapter 6 for details.)

Thus Theorem 7.11 immediately provides coplanarity constraints provided
that line 3 in Figure 7.17 is a straight line. Note, however, that we can say
more: the coplanarity of a set of 3D edges may be detected even when the edges
do not lie on the same face circuit. Figure 7.19 shows an example. In this
wireframe projection, knowing that A and B are both W(+) junctions allows us
to deduce that lines 1, 3, 4 are coplanar (as are lines 2, 3, 5). By exhausting all
cases, we discover that the presence of any number of X(=), X(�=) or snowflake
junctions on line 3 in the W/Y junction pair of Figure 7.17 does not invalidate
the coplanarity constraint, which we state formally as follows.

Theorem 7.12 (Coplanarity constraint) Suppose that lines 1–5 of the W/Y
junction pair (J1, J2) in Figure 7.17 are straight lines and there are any number
of X or snowflake junctions on line 3. If p = (nrefl(J1, J2) + n3t(J1, J2) +
n+(J1, J2)) mod 2, then both (1, 3, 5−p) and (2, 3, 4+p) are triples of coplanar

7.7. COPLANARITY CONSTRAINTS 149

�
�
�
��

�
�
�

�
�
�
��

�

�
�
��

A

B1 2

3 4
5

Figure 7.19: The coplanarity of lines 1, 3, 4 can be deduced despite the fact
that they do not lie on the same face.

lines.

As an example of the strength of the coplanarity constraint, consider the
wireframe projection shown in Figure 7.20(a). The wireframe projection has
two legal labellings, one of which is the depth reversal of the other. The bottom
left corner of one of these legal labellings is illustrated in Figure 7.20(b). The
visible lines of this labelling corresponds to the famous Penrose triangle [128]
shown in Figure 7.20(c). The physical impossibility of the wireframe projection
follows from the coplanarity constraint. In both legal labellings, junction pairs
B, C and C, D are both of opposite sign. It follows from Theorem 7.12 that
both A, B, C, D and B, C, D, E are projections of sets of coplanar points.
Hence A, B, C, D, E are projections of coplanar points. By symmetry, E, D,
F , G, H are projections of coplanar points, as are H , G, I, B, A. These three
planes should then meet at a point in 3D space, which implies that lines AB,
ED and HG, when extended, should meet at a point in the drawing. Since this
is clearly not the case, the wireframe projection is physically impossible.

To obtain necessary and sufficient conditions for the realizability of a wire-
frame projection of curved objects involving straight lines, we require not only
the coplanarity constraints deduced from Theorem 7.12, but also inequality con-
straints expressing the fact that the nearer line passes in front of the distant line
at each X(�=) junction and that the two faces meeting at each concave (convex)
edge subtend an angle less (greater) than π (Chapter 6). This leads to a lin-
ear programming problem P . However, a realizable wireframe projection may
give rise to a problem P which has no solution due to rounding errors or small
user errors in the positions of junctions. Different solutions have been proposed
to overcome this problem of superstrictness [155, 135, 37]. It should be noted
that testing the realizability of a wireframe projection still involves solving a
linear programming problem for each of a possibly exponential number of legal
labellings.

150 CHAPTER 7. WIREFRAME PROJECTIONS

�
�
�
�
�
�
���
�
�
�
���

�
�
�
�
�
�
��

�
�
�
�
�
��

�
�
�
�
��

�
�
�
�
�
�
���

�
�
�
�
���
�
�
�
�
�
�
��

���

���

���

���

A

B

C

D

E

F

GH

I(a)

����

����

��
��

��
��

�� ��

+ −

+

−
0,0

0,0

0,0

0,0

0,0

0,1

0,1

1,0

1,0

1,1

�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
��

�
�
�
�
�
�
�
�

�
�
�
��

(b)

�
�
�
�
�
�
���
�
�
��

�
�
�
�
�
�
�
��

�
�
�
��

�
�
�
�
�
�
��

�
�
�
�
�
�
�
��

���

���

(c)

Figure 7.20: (a) A wireframe projection; (b) a part of a legal labelling; (c) the
visible lines corresponding to this labelling.

7.8 Unambiguous Wireframes

Although all physically realizable wireframe projections are ambiguous by The-
orem 7.6, we show in this section that the presence of extra information, to-
gether with some further restrictions on the class of 3D scenes, can eliminate
all ambiguity either in the determination of the face-circuits or in the complete
interpretation of the wireframe.

Definition 7.13 A vertex V is simple if none of the edges which meet at V con-
tinues through V. Thus vertices which project into X(=) or snowflake junctions
are not simple.

Definition 7.14 A wireframe projection is simple polyhedral if it is a projec-
tion of a collection of polyhedral objects with simple vertices satisfying conditions
1–4 (of Section 7.2).

Theorem 7.15 Let P be a simple polyhedral wireframe projection. If for each
W/Y junction pair (J1, J2) we know whether J1, J2 are of the same or of opposite
signs, then the face circuits of P can be unambiguously identified in linear time.

Proof: Since P is simple polyhedral, it only contains junctions of type W,
Y, X(�=). X(�=) junctions have no effect on face circuits. The common-surface
constraint of Theorem 7.11 allows us to construct without ambiguity the face

7.8. UNAMBIGUOUS WIREFRAMES 151

circuits of P . This can clearly be achieved in linear time, by extending face-
circuit fragments until a closed circuit is obtained and restarting this procedure
until each line is has been placed in two distinct face circuits.

Corollary 7.16 Let P be a simple polyhedral wireframe projection. If for each
line L in P we know the position of the vanishing point of L, then the face
circuits of P can be unambiguously identified in linear time.

Proof: By the assumption of a polyhedral scene, all edges are straight lines.
The position of the vanishing point of each line L in P allows us to determine
whether each W/Y junction J of P is + or − [127]. Thus, by Theorem 7.15,
the face circuits of P can be determined in linear time.

Sugihara [151, 155] and Alevizos [5] both study a specific type of wireframe
projection in which the user specifies, for each line L, whether L is of even or
odd depth. In other words, if (m,n) represents the numerical label of L, the user
must specify whether m is even or odd. We say that such a wireframe projection
has depth-parity information. Consider a W/Y junction pair as illustrated in
Figure 7.17. Recall that nrefl(J1, J2) is the number of the angles α, β, γ, δ in
Figure 7.17 which are greater than π. We say that a W/Y junction pair has
even (odd) angle parity if nrefl(J1, J2) is even (odd). Given the depth parity of
each of lines 1, 2, 4, 5 in a W/Y junction pair, we can also clearly determine
the parity of the sum s of the depths of lines 1, 2, 4, 5; we say that a W/Y
junction pair has even (odd) depth parity if s is even (odd). Having established
the necessary notation, we can now state the following lemma.

Lemma 7.17 Let (J1, J2) be a W/Y junction pair in a wireframe projection
formed under assumptions 1, 2, 3, 4 of Section 7.2. If the angle parity of (J1, J2)
is the same as its depth parity, then J1, J2 are of the same sign; otherwise J1, J2

are of opposite sign.

Proof: The proof is simple, although tedious, by exhaustion over all possible
labellings of all possible configurations of W/Y junction pairs.

Thus, depth-parity information for each line allows us to deduce for each
W/Y junction pair (J1, J2), whether J1, J2 are of the same or opposite signs.
Theorem 7.15 then provides us with a simple proof of the following result first
stated by Alevizos [5].

Corollary 7.18 Let P be a simple polyhedral wireframe projection with depth-
parity information. Then the face circuits of P can be unambiguously identified
in linear time.

Under perspective projection, the vanishing points of all lines provide suf-
ficient information to identify the sign of W/Y junctions. Under orthographic

152 CHAPTER 7. WIREFRAME PROJECTIONS

projection, on the other hand, the sign of W/Y junctions is inherently ambigu-
ous, as illustrated by the depth-reversal phenomenon (Section 7.4) in which all
W/Y junctions change sign. However, we can use the fact that, under ortho-
graphic projection, if two lines L1, L2 in the wireframe projection are parallel,
then, by the general viewpoint assumption, L1, L2 are projections of parallel
lines in 3D. If, in the generic W/Y junction pair shown in Figure 7.17, all lines
are straight lines and lines i and j are parallel (where i ∈ {1, 2} and j ∈ {4, 5}),
then it follows that lines i, 3, j are coplanar and hence, by the straight-edge
formation assumption, that i, 3, j is a face-circuit fragment.

Corollary 7.19 Let P be a simple polyhedral wireframe projection formed by
orthographic projection. If all lines of P are parallel to one of only three direc-
tions, then the face circuits of P can be uniquely determined in linear time.

Proof: Since all lines of P are parallel to one of only three directions, at each
W/Y junction pair there must be two pairs of parallel lines (either (1, 4), (2, 5)
or (1, 5), (2, 4) where the numbers refer to the lines in Figure 7.17). From
the discussion above, at each W/Y junction pair, we can thus determine two
face-circuit fragments (either (1, 3, 4), (2, 3, 5) or (1, 3, 5), (2, 3, 4)). The result
then follows by the same argument as in the proof of Theorem 7.15

Theorem 7.20 Let P be a simple polyhedral wireframe projection. If for each
vertex V in P we know the 3D coordinates of the point which projects into V
(i.e. we have a 3D wireframe model), then the semantic and numerical labelling
of P is unique. Furthermore, the physical realizability of P can be checked and
the semantic and numerical labelling of P can be found in quadratic time.

Proof: From the 3D positions of vertices we can determine for each W/Y
junction J in P whether J is + or −. Theorem 7.15 then tells us that we can
uniquely determine the face circuits of P . Since we know the 3D coordinates of
all vertices, we can then easily determine the 3D face boundaries projecting into
the face circuits of P . In order to identify faces, it only remains to determine
for each 3D face boundary B whether B is the outer boundary of a face or the
boundary of a hole. Consider only those 3D face boundaries B1, . . . , Br which
lie in the same plane QB as B. Let HB be a half-line from a point on B to
infinity within the plane QB such that HB does not intersect any object vertex.
Then B is an outer boundary (hole boundary) if the number of intersections
of HB with the 3D face boundaries B1, . . . , Br is even (odd). (Note that here
we do not need to consider any intersections of HB with faces which are not
coplanar with B, which renders this operation much simpler than when it is
performed as a means of identifying face circuits [82, 112].)

For each line L in P , it is then trivial to determine the semantic label of
L from the resulting set of faces. Furthermore, by tracing a ray R from the
viewpoint through an arbitrary point on the 3D edge EL which projects into
L and counting the number of faces which R intersects in front of and behind
EL allows us to deduce the numerical label (m,n) of L. To check the physical

7.9. RESIDUAL AMBIGUITY 153

�
�
�
�
�

�
�
�
�
�

�� ��

��

��

�
�
�
�
�

�

���
��

A B

C D

E
F

G

H

Figure 7.21: An example of an impossible 3D wireframe model of a polyhedral
object.

realizability of P we only need to determine for each pair of faces F1, F2, whether
F1, F2 intersect. If they do, then this intersection must correspond to an edge
on the 3D face-boundaries of both F1 and F2.

As an example, Figure 7.21 shows a physically impossible 3D wireframe
model. It is illegal because the two faces ABCD and EFGH intersect along an
edge whose projection is not present in the model. Note, on the other hand, that
this wireframe model is physically realizable if surface ABCD may be curved.

7.9 Residual Ambiguity

It is worthwhile studying wireframe projections in which the assumptions of the
uniqueness theorems of Section 7.8 have been relaxed in order to see which kinds
of ambiguity can occur. The simple polyhedral wireframe projection on the left-
hand side of Figure 7.22(a) is an orthographic projection of a pair of cubes. All
lines are parallel to one of just three directions. By Corollary 7.19, all face
circuits can be uniquely determined. However, we cannot determine whether
one cube lies in front of, behind or inside the other. Thus the numerical labelling
of lines is not unique. Furthermore, neither the semantic labelling nor the faces
are unique since if one cube lies inside the other, then the left-hand side of the
inner cube may be a face or a hole (as illustrated on the right-hand side of
Figure 7.22(a)).

Under orthographic projection, the face circuits of the wireframe projection
shown on the left-hand side of Figure 7.22(b) can be uniquely determined (by
Corollary 7.19) provided X(=) junctions cannot occur. This is despite depth-
reversal ambiguity as well as relative-depth ambiguity between the two objects.
However, if X(=) junctions may occur, then the wireframe projection may be
interpreted as either of the two distinct cross-shaped objects (formed by sticking
two rectangular objects together) shown on the right-hand side of Figure 7.22(b).

154 CHAPTER 7. WIREFRAME PROJECTIONS

�
�
�
�
�

�
�
�
�
��

�
�
��

�
�
�
��

�
�
�
�
�

�
�
�
�
��

�
�
��

�
�
�
��

�
��

�
��

�
�
�

�
�
�

�
��

�
��

�
�
�

�
�
�

�
�
�
�
��

�
�
��

�
�
�
�
�

�
�
�
�
��

�
�
��

�
�
�
��

�
��

�
�
�

�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�
�

�
�
�
�
��

�
�
��

�
�
�
��

�
�
�
�
�

�
�
�
�
��

�
�
��

�
�
�
��

�
��

�
��

�
�
�

�
�
�

�
��

�
��

�
�
�

�
�
�

)))

�
�

�

�
�
�

��

��

�
�
�
�
��

�
�
��

�
�
�
�
�

�
�
�
�
��

�
�
��

�
�
�
��

�
��

�
�
�

�
�
�

��

�
�
�
��

�
�
�
�
�

�
�
�
�
��

�
�
��

�
�
�
��

�
�
�
�
�

�
��

��

�
�
�

(a)

(b)

(c)

Figure 7.22: Examples of ambiguous wireframe projections.

7.10. CONSTRAINTS BETWEEN DISTANT LINES 155

These two interpretations, as well as a third interpretation as two separate
objects, all give rise to distinct sets of face circuits.

Finally, the wireframe projection shown on the left-hand side of Figure 7.22(c)
is a classic example [112, 118] of an ambiguous 3D wireframe model with non-
trihedral vertices. Two possible interpretations are shown on the right-hand
side of Figure 7.22(c). These interpretations clearly do not have the same face
circuits.

The main source of ambiguity in wireframe projections remains the miss-
ing depth dimension. Different heuristics have been proposed to choose among
different interpretations of a wireframe projection, favouring commonly occur-
ring features of man-made objects such as planarity, symmetry, orthogonality,
equality of angles or lengths [111, 99, 103]. Leclerc and Fischler [99] state an
interesting condition for evaluating the psychological plausibility of a recon-
structed object O, namely that the same object O be produced by the recovery
algorithm from a wireframe projection of O from a different viewpoint. We
advocate the use of a rich discrete labelling scheme and complete search, as
discussed in detail in Chapters 3–5 for visible-line drawings, before embarking
on an incomplete search over real-valued parameters.

The complexity of testing the existence of a valid semantic and numerical
labelling of a wireframe projection is an open problem (although it is likely
to be NP-complete). A similar remark holds for testing the realizability of a
wireframe projection.

A catalogue of labelled junctions is insufficient to disambiguate drawings of
complex objects with tetrahedral vertices and curved surfaces. In the rest of
this chapter, we therefore introduce new constraints between distant lines based
on the local planarity of surfaces and introduce a richer labelling scheme which
allows us to identify locally planar surfaces of curved objects. We show how
the valued constraint satisfaction framework can be used to express preferences
for interpretations involving common features such as locally-planar surfaces,
orthogonal edges and pairs of parallel 3D edges.

7.10 Constraints Between Distant Lines

It is well known that low-order constraints often exist between distant lines in
drawings of polyhedral objects. In Chapter 3, we gave two generic constraints,
the cyclic-path constraint and the parallel-lines constraint, which extended pre-
viously published constraints, in particular, Huffman’s cut-set rule based on
reasoning in dual space [77]. Unfortunately, these constraints only apply to
drawings in which only visible lines are shown. In this section, we merge and
generalize these constraints so that they can be applied to wireframe projections.
In the next section, we use this new wireframe-path constraint to generate the
catalogue of labelled projections of tetrahedral vertices.

The cyclic-path and parallel-lines constraints (Chapter 3) generate a con-
straint on the labels that can be assigned to a set of lines intersected by a
path in a visible-line drawing; this path necessarily lies on visible surfaces. In

156 CHAPTER 7. WIREFRAME PROJECTIONS

wireframe projections we need to specify on which surface the path lies by giving
the depth m of the surface at each point of the path. We assume throughout this
section that the objects depicted in the drawings are polyhedral. We show in
Section 7.13 how to apply the wireframe-path constraint to drawings of curved
objects with some planar faces.

Given a path Π joining two lines L1, L2, which are projections of edges E1,
E2 which are known to intersect in 3D, we can place restrictions on the labels
which can be simultaneously assigned to the lines intersected by Π. Edges E1,
E2 meet in 3D at a point P which projects into a point Q, known as the anchor
point. We may know that E1, E2 intersect for any of the following reasons:

• Under orthographic projection, L1 and L2 are parallel lines, which under
the general viewpoint assumption implies that E1 and E2 are parallel and
hence meet at a point at infinity P .

• Under perspective projection, E1 and E2 have been deduced to be parallel
since L1 and L2 meet at a vanishing point Q.

• L1 and L2 meet at a viewpoint-independent junction Q, which implies
that E1 and E2 meet at a vertex P .

• L1 = L2 in which case E1 = E2 and Q can be chosen to be any point on
L1.

Let S1, . . . , St be the set of surfaces through which path Π passes and let Q be
the anchor point. We write Si ≥Q Sj if Si passes behind or intersects Sj at Q
(with the inequality being strict if the surfaces do not intersect at Q). Similarly,
we write Ei ≥Q Sj (Si ≥Q Ej) if Ei (Si) passes behind or intersects Sj (Ej)
at Q. The wireframe-path constraint simply says that it is impossible to have
E1 ≥ S1 ≥Q S2 ≥Q . . . ≥Q St ≥Q E2 if there is at least one strict inequality,
since we know that E1 and E2 intersect at Q.

Figure 7.23 shows the six distinct configurations at which a path can begin,
and Figure 7.24 shows the seven distinct configurations at which a path can
terminate. For brevity of presentation, we have omitted from both of these
figures the reflected versions of the six configurations, which nevertheless must
be included in a complete list of start and end configurations. As an example,
the reflected version of Figure 7.23(a) is identical except that path Π leaves line
L1 vertically upwards rather than vertically downwards.

The inequalities given in Figure 7.23 (such as p ≤ m in Figure 7.23(c))
guarantee that at Q the surface S1 in which path Π begins either passes through
or in front of edge E1. If S1 passes strictly in front of E1 at Q, then the start
configuration is known as strictly positive. It is tedious but easy to check that
the start configurations in Figure 7.23(c)–(f) are strictly positive if:

• In Figure 7.23(c), we also have q > n;

• In Figure 7.23(d), we also have q > n+ 1 +m′ −m;

• In Figure 7.23(e), we also have p > m;

7.10. CONSTRAINTS BETWEEN DISTANT LINES 157

�

+/−
m,n

L1

Π

m

•
Q

(a)
�

��
m′, n

L1

Π

m

m′ ∈ {m−1,m}

•
Q

(b)

�
�
�
�
� �

+/−
m,n

L1

Π

m

•
Q

(c)

p, qJ
���
�...

L′

p ≤ m

�
�
�
�
� �

��##
m′, n

L1

Π

m

•
Q

(d)

p, qJ
���
�...

L′

p ≤ 2m−m′

m′ ∈ {m−1,m}

�
�
�
�
��

+/−
m,n

L1

Π

m

•
Q

(e)

p, q J
���
� ...

L′

q ≤ n

�
�
�
�
��

m′, n

L1

Π

m

•
Q

(f)

p, q J
���
� ...

L′

q ≤ n+1+m′−m
m′ ∈ {m−1,m}

��""

Figure 7.23: How paths start. (To this list we must also add the reflected version
of each of the above configurations.)

158 CHAPTER 7. WIREFRAME PROJECTIONS

�

+/−
m,n

L2

Π

m

•
Q

(a)

�

��
m′, n

L2

Π

m

m′ ∈ {m−1,m}

•
Q

(b)

�
�
�
�
�
�

+/−
m,n

L2

Π

m

•
Q

(c)

p, qJ
���
�...

L′

q ≤ n

�
�
�
�
�
�

��##
m′, n

L2

Π

m

•
Q

(d)

p, qJ
���
�...

L′

q ≤ n+1+m′−m
m′ ∈ {m−1,m}

�
�
�
�
�
�

+/−
m,n

L2

Π

m

•
Q

(e)

p, q J
���
� ...

L′

p ≤ m

�
�
�
�
�
�

m′, n

L2

Π

m

•
Q

(f)

p, q J
���
� ...

L′

p ≤ 2m−m′

m′ ∈ {m−1,m}

��""

(g)
�

Π

m

��
p, n

•
Q

m ≥ p

L2

Figure 7.24: How paths end. (To this list we must also add the reflected version
of each of the above configurations.)

7.10. CONSTRAINTS BETWEEN DISTANT LINES 159

• In Figure 7.23(f), we also have p > 2m−m′.

Similarly, the inequalities given in Figure 7.24 guarantee that at Q the final
surface St of Π either passes through or behind edge E2. The end configuration
is known as strictly positive if St passes strictly behind E2 at Q. The end
configurations in Figure 7.24(c)–(f) are strictly positive if:

• In Figure 7.24(c), we also have p > m;

• In Figure 7.24(d), we also have p > 2m−m′;

• In Figure 7.24(e), we also have q > n;

• In Figure 7.24(f), we also have q > n+ 1 +m′ −m.

The end configuration in Figure 7.24(g) is always strictly positive provided the
occluding label for L2 implies a depth discontinuity at Q (which is the case, for
example, in a wireframe projection of a single manifold object).

Definition 7.21 A path in a wireframe projection consists of an anchor point
Q and a locus Π of points, together with a depth label m at each point of Π. The
depth label m remains constant between intersections. Locus Π begins in one of
the start configurations in Figure 7.23, contains any number of strictly positive
or null intersections (as given in Figure 7.25) and terminates in one of the end
configurations in Figure 7.24, where lines L1,L2 are projections of edges which
meet at a 3D point P which projects into Q.

In the strictly positive intersections shown in Figure 7.25(a), the reference
point Q lies anywhere in an open half-plane defined by line L (i.e. strictly above
or below L, as indicated). It is easy to verify that, in each of the four cases in
Figure 7.25(a), if path Π passes from surface Si to surface Si+1 as it crosses the
edge, then Si is behind Si+1 at Q. If Q is collinear with L, then the intersection
becomes a null intersection. In the null intersections shown in Figure 7.25(b),
the reference point Q can lie above, lie below or be collinear with line L, since
Π lies on a surface which is either in front of or behind the edge projecting into
L.

Definition 7.22 A path in a wireframe projection is strictly positive if it begins
and/or ends at a strictly positive configuration and/or contains at least one
strictly positive intersection.

The wireframe-path constraint simply says that strictly positive paths
are disallowed in wireframe projections of polyhedral objects.

A path Π is given not by the actual locus of points, but rather by the sequence
of line segments it intersects. We define its length to be the total number of lines
involved in its start and end configurations and any intersections on Π. The
number of paths of length n is an exponential function of n. Clearly, from a
practical point of view we must restrict ourselves to applying the wireframe-path
constraint to paths of limited length, such as n = 5, for example.

160 CHAPTER 7. WIREFRAME PROJECTIONS

(a)

(b)

�

Π

m

m+
m,n

Q •

L

�

Π

m

m−
m,n

Q •
L

�Π

m−1
m

���

m−1, n

Q •

L

�Π

m+1
m

���

m,n Q•
L

�

Π

m

m
���
p, n

m < p

L

�

Π

m+ 2

m
���
p, n

m ≥ p

L

�

Π

m

m

�
��

p, n

m < p

L

�

Π

m

m+ 2

�
��

p, n

m ≥ p

L

�

Π

m

m+
p, n

m �= p

L

�

Π

m

m−
p, n

m �= p

L

Figure 7.25: (a) Strictly positive intersections; (b) null intersections. The inter-
sections in (a) become null when Q is collinear with L.

7.10. CONSTRAINTS BETWEEN DISTANT LINES 161

����

����

�

����
�
##

�
##

�
##

	
��

�
�

�
�

�
�

��

�
�

�##

+

+ + +

+

+

+

+
+

−

−

−

0,0

0,00,0

0,0

0,0
0,00,0

0,0
0,0

0,0

0,0

0,1

0,1

0,1

0,2

2,0

0,1

0,1

0,1

1,0 1,0

1,0

1,0

1,1

0,1

0,1

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

0

0

(a)

�

�

�

�

�
�

�

�
�

�
�

�
�

�

�
�

�
�

�
�

�

(b)

Figure 7.26: (a) A legally labelled wireframe projection; (b) the corresponding
solid object (shown half-size).

162 CHAPTER 7. WIREFRAME PROJECTIONS

Figure 7.26(a) shows an example of a legally labelled wireframe projection.
Figure 7.26(b) shows only lines at depth m = 0 and hence illustrates the solid
object corresponding to this labelling. We can see that this labelling is theoret-
ically impossible, under the general viewpoint assumption, since it contains the
strictly positive path shown in Figure 7.26(a) as a dashed line.

Consider an instance of the wireframe-path constraint along a path Π, be-
ginning and ending at lines L1, L2, respectively, where L1, L2 are postulated to
be projections of parallel edges E1, E2. Suppose that L1, L2 ∈ S, where S is a
set of lines which are postulated to be projections of parallel 3D edges, because,
for example, under orthographic projection their angles all lie within the same
small interval [θ − ε, θ + ε]. In the valued constraint framework, this instance
of the wireframe-path constraint can be coded as the combination of the strict
constraint

parS ⇒ the wireframe-path constraint holds on Π

and the unary valued constraint which incurs a given finite cost c > 0 if
parS=false (and cost 0 if parS=true), where parS is true iff all lines in S
are projections of parallel 3D edges. This valued constraint formulation avoids
superstrictness problems which result, for example, if we assume that all paral-
lel lines in an orthographic projection are projections of parallel 3D edges. In
the case of Figure 7.26(a), it allows us to accept the interpretation shown in
Figure 7.26(b) and deduce that the vertical lines in the wireframe projection
are not all projections of parallel edges in 3D. This is indeed the most likely in-
terpretation of this wireframe projection. Of course, if L1 = L2 or if L1, L2 are
projections of lines which meet at a vertex, then the wireframe-path constraint
is a strict constraint.

Our main interest in the wireframe-path constraint lies not in the possibility
of detecting or correcting impossible pictures, but rather in the possibility of
disambiguating otherwise ambiguous pictures. Consider the wireframe projec-
tion in Figure 7.27(a) (adapted from a drawing in Liu et al.’s test set [105]). We
see this object as the union of a triangular wedge and a parallelepiped, but other
interpretations are possible. The combination of labels shown in Figure 7.27(a)
violates the wireframe-path constraint on the path Π shown as a dashed line
in the figure (joining two parallel lines). It follows that the wireframe-path
constraint invalidates this interpretation, which is illustrated in Figure 7.27(b)
(where only visible lines are shown). In the valued constraint formulation, de-
scribed above, this implies that the interpretation shown in Figure 7.27(b) is
non-optimal since it incurs a non-zero cost due to the fact that parallel lines in
2D are not projections of parallel 3D edges. The triangular wedge plus paral-
lelepiped interpretation has zero cost. It is worth noting that if lines AB and
CD were not parallel, then this wireframe projection would be genuinely am-
biguous with different interpretations having different sets of face circuits. This
example shows that it is essential to use parallel lines in the interpretation of
wireframe projections if the system is to reliably reconstruct the object actually
intended by the user.

7.11. TETRAHEDRAL VERTICES 163

(a)

����������

����������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

����������

����������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

����

����

��
1,1

�0,2 0,1+
�

0

1

A

B

C

D

(b)

����������

����������

�
�
�
�
�
�
�
�����������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

����

���

Figure 7.27: Example of the use of the wireframe-path constraint: (a) a strictly
positive path which invalidates the interpretation shown in (b).

Our interest in constraints between distant lines lies in their ability to dis-
ambiguate otherwise ambiguous pictures such as in Figure 7.27(a). This is
particulary important when we enlarge the class of objects to include objects
with tetrahedral vertices, as we will see in the following section.

7.11 Tetrahedral Vertices

In Figures 7.6–7.8 we gave the catalogue of legally labelled trihedral junctions.
In this section we extend this catalogue to include all vertices formed by the
intersection of four edges (some of which may be collinear) and four planar faces
F1, . . . , F4. We assume that the object is a 3D manifold and that its surface S
is manifold in the neighbourhood of vertex V . This means that the intersection
of S with a sphere centred at V and of radius ε forms a simple closed curve
C. We can classify the vertices into different types according to the topology
of the projection C′ of C in the image plane. The signature of a projection of
a vertex tells us where C′ turns back on itself (to form an occluding line) and
the relative depth order of the faces F1, . . . , F4. By exhaustive search, using
the simple constraints that faces intersect only at edges and that a planar face
cannot overlap itself, it is simple to discover that there are essentially only
eleven non-equivalent signatures for tetrahedral vertices. These are shown in
Figure 7.28. We consider two signatures to be equivalent if they can be put into
correspondence by some combination of rotation, reflection and depth reversal.

164 CHAPTER 7. WIREFRAME PROJECTIONS

���#
#
##

•

•

•

• ��
#
##

•
•

•
•

��

##

•
•

•

•

��
#
#
##

•

• •

•

�

##

•
• •

•

�#
##

•
• •

•
�
#
##

•
•

•
• ��

##

•

•

•

•

��

##

•
• •

•

�#
##

•
• •

•
�#

##

•
• •

•

Figure 7.28: The eleven non-equivalent legal signatures of tetrahedral junctions.

7.11. TETRAHEDRAL VERTICES 165

Each signature may correspond to a number of different junction labellings.
The junction type may be Multi, Peak, K, Ψ or X depending on the angles
between the four lines [43, 165]. Furthermore, each non-occluding edge may be
either concave or convex. However, starting from the list of 11 non-equivalent
signatures in Figure 7.28 allowed us, by hand, to find all legally-labelled junc-
tions formed by the wireframe projection of tetrahedral vertices. Given any two
faces Fi, Fj which meet at a vertex, their projections in the picture plane cannot
overlap over an angle greater than π (otherwise Fi and Fj would pass through
each other, thus creating an edge which is not 3D-manifold). Those labellings
which did not satisfy this property or the wireframe-path constraint were elimi-
nated. It turned out that each of the remaining labellings was realizable, which
we checked by hand by constructing a vertex which projected into the actual
labelled junction.

Huffman [75] and Clowes [20] used a different exhaustive technique to es-
tablish the catalogue of labelled projections of trihedral vertices: at the vertex,
space is divided into eight octants which may be filled with matter or be empty;
each manifold vertex can then be viewed from each of the eight octants. The
technique we employed for tetrahedral vertices, based on signatures, requires
exhaustion over a smaller number of cases than this traditional technique.

Figures 7.29 and 7.30 give the resulting catalogue of labelled junctions which
are projections of tetrahedral vertices. To obtain the complete catalogue of
labelled junctions we must not forget to add all labellings which can be obtained
by any combination of rotation, reflection and depth-reversal. This means that
the number of distinct legal labellings for Multi, Peak, K and Ψ junctions are,
respectively, 70, 56, 24 and 24 (once the numerical label m,n of one line is
fixed). In the analysis of wireframe projections, allowing tetrahedral vertices
does not increase the number of legal labellings for W, Y, 2-tangent, 3-tangent,
X and snowflake junctions.

The construction of a catalogue of legal labellings could be automated for
higher-order vertices. We briefly describe an effective procedure for doing so.
Consider a vertex V at which N faces meet. Suppose that V is an isolated
vertex in the sense that no other faces lie in front of or behind V . Then the
total number of faces which lie in front of or behind any of the edges E meeting
at V is clearly bounded above by N − 1. The numerical label mE , nE for the
projection of E thus satisfies 0 ≤ mE + nE ≤ N − 1. Hence there is only a
finite number of possible numerical and semantic labellings which need to be
checked for validity, for each different junction type involving N lines. (Generic
numerical labellings involving two variables m and n, representing the number
of surfaces in front of and behind V , are easily obtained by adding m,n to the
numerical label of each edge E meeting at V .) We described in [42] how to
uniquely identify faces given a labelled wireframe projection:

1. For each region R in the drawing, calculate, from the semantic and nu-
merical label of one of the lines bounding R, the number NR of surfaces
projecting into R.

2. Generate an imaginary stack Stack(R) of NR copies of region R.

166 CHAPTER 7. WIREFRAME PROJECTIONS

+ +

+
+

m,n

m,n

m,n m,n

����

�
�

+ +

+ −

m,n

m,n

m,n m,n

����

�
�

+ −

−
+

m,n

m,n

m,n m,n

����

�
�

−
+

m,n

m,n

m,n+1 m,n+1

����

�
� − −

m,n

m,n

m,n+1

m,n+1

����

�
�

−

+

m,n

m,n+1

m,n m,n+1

����

�
�

−

−

m,n

m,n+1

m,n m,n+1

����

�
�

− −m,n+1

m,n+1

m,n m,n

����

�
�

m,n+1

m+1,n

m+1,n m,n+1

����

�
�

+

+

m,n

m+1,n

m,n m,n+1

����

�
�

−

+

m,n

m+1,n

m,n m,n+1

����

�
�

−
+

m+1,n

m,n+1

m,n m,n

����

�
�

+ +
m,n

m,n

m,n+1

m+1,n

����

�
�

+ −m,n

m,n

m,n+1

m+1,n

����

�
�

−

−

m,n

m,n+1

m+1,n

m,n+2

����

�
�

− +
m,n+1

m+1,n

m+2,n

m,n+2

����

�
�

+

+

m,n

m,n

m+1,n

m,n+1

����

�
�

+

−

m,n

m,n

m+1,n

m,n+1

����

�
�

−

+

m,n

m,n+1

m,n
m+1,n

����

�
�

−

−

m,n

m,n+1

m,n
m+1,n

����

�
�

−
+

m+1,n

m,n+1

m,n+2

m+2,n

����

�
�

m,n

m,n

m,n+2

m+1,n+1

����

�
�

+ +

− +

m,n m,n

m,n

m,n

���� �
�
�

�
�
�

+ +

− −

m,n m,n

m,n

m,n

���� �
�
�

�
�
�

− +

+ −

m,n m,n

m,n

m,n

���� �
�
�

�
�
� + +

m,n
m,n

m,n+1

m,n+1

���� �
�
�

�
�
� − +

m,n
m,n

m,n+1

m,n+1

���� �
�
�

�
�
�

m,n+1
m,n+1

m+1,n

m+1,n

���� �
�
�

�
�
�

m+1,n
m,n+1

m,n+1

m+1,n

���� �
�
�

�
�
�

+

+

m,n
m+1,n

m,n

m,n+1

���� �
�
�

�
�
�

+

−

m,n
m+1,n

m,n

m,n+1

���� �
�
�

�
�
�

−

+

m,n
m+1,n

m,n

m,n+1

���� �
�
�

�
�
�

− −
m,n m,n

m,n+1

m+1,n

���� �
�
�

�
�
�

+ −
m,n m,n

m,n+1

m+1,n

���� �
�
�

�
�
�

−

−

m,n
m,n+1

m+1,n

m,n+2

���� �
�
�

�
�
�

+

+

m+1,n m,n

m,n+2

m,n+1

���� �
�
�

�
�
�

m,n
m,n

m,n+2

m+1,n+1

���� �
�
�

�
�
� + +

m,n
m,n

m+1,n

m,n+1

���� �
�
�

�
�
� − +

m,n
m,n

m+1,n

m,n+1

���� �
�
�

�
�
� − +

m+1,n
m,n+1

m,n+2

m+2,n

���� �
�
�

�
�
�

Figure 7.29: Catalogue of Multi and Peak junction labellings (to which must be
added all labellings obtained by reflection and/or depth reversal).

7.11. TETRAHEDRAL VERTICES 167

+ +

− +

m,n m,n

m,n m,n

�
�
��

�
�
��

+ −
− +

m,n m,n

m,n m,n

�
�
��

�
�
��

− −
− +

m,n m,n

m,n m,n

�
�
��

�
�
��

	� 	�

− +

m,n m,n

m,n+1 m,n+1

�
�
��

�
�
��

	� 	�

""� ##�

m+1,n m,n+1

m,n+1 m+1,n

�
�
��

�
�
��

+ +

""� ##�

m,n m,n

m,n+1 m+1,n

�
�
��

�
�
��

+ −
""� ##�

m,n m,n

m,n+1 m+1,n

�
�
��

�
�
��

	� 	�

""� ##�

m,n m,n

m,n+2 m+1,n+1

�
�
��

�
�
��

	� 	�

− +

m+1,n m,n+1

m,n+2 m+2,n

�
�
��

�
�
��

+
��

−

�
m,n m+1,n

m,n

m,n+1

���� ��
+�

+
m+1,n m,n

m,n+1

m,n

���� ��
+�

−
m+1,n m,n

m,n+1

m,n

����

−
��

+

�

m,n+1 m,n

m+1,n

m,n

����
−

��
−

�

m,n+1 m,n

m+1,n

m,n

���� ��
−
�

+
m,n m,n+1

m,n

m+1,n

����

Figure 7.30: Catalogue of K and Ψ junction labellings (to which must be added
all labellings obtained by reflection and/or depth-reversal).

168 CHAPTER 7. WIREFRAME PROJECTIONS

(c)

�
�

(a)

�
�
�
�
�
�

�
�
�
�
�
��

�
�
�
�
�

�
�
�
�
�
��

�
�
�

�
�
�
�

��
��

��
������

����

+

+

−

−

0,0

0,0

0,2
0,1

0,1

1,1
1,1

1,1 2,1
2,1

��

��

��

�

�

�
����

1

1

(b)

Figure 7.31: (a) A labelling which is illegal by the wireframe-path constraint;
(b),(c) horizontal and vertical cross-sections through the middle of a curved
object corresponding to this labelling.

3. For each line L (which without loss of generality we suppose is verti-
cal) with numerical label m,n separating a pair of regions Rleft, Rright:
if the semantic label of L is + or −, then join the depth-m surfaces in
Stack(Rleft) and Stack(Rright); if the semantic label of L is ↑ or ⇑, then
join the depth-m and depth-(m + 1) surfaces in Stack(Rright); if the se-
mantic label of L is ↓ or ⇓, then join the depth-m and depth-(m + 1)
surfaces in Stack(Rleft).

This technique can clearly be applied to the wireframe projection of vertex
V . The validity of the resulting face structure can then be checked by Sugi-
hara’s classic linear programming technique for drawings of polyhedral objects
[155]. Assuming that object edges and surfaces are C3 and that they meet non-
tangentially at V , in the neighbourhood of V the object can be approximated
by the polyhedral vertex formed by the tangent planes to its surfaces. Further-
more, no problems of superstrictness can occur in a drawing of a single isolated
vertex.

7.12. TANGENTIAL EDGES AND SURFACES 169

Definition 7.23 Two semantic and numerical labellings of a wireframe projec-
tion are topologically equivalent if the set of faces they define are identical.

For example, a labelling and its depth reversal are necessarily topologically
equivalent. More generally, changing some semantic labels from + to − (and
some from − to +) does not alter the faces of an object but may not produce a
legal labelling.

Figure 7.31(a) shows a typical example of a wireframe projection of a planar-
faced object with tetrahedral vertices. There are several legal labellings of
this wireframe projection which satisfy both the junction constraints and the
wireframe-path constraint. These different labellings are all topologically equiv-
alent since they all represent a torus with a triangular cross-section. If we do
not apply the wireframe-path constraint, then many more labellings become le-
gal. Each of these labellings can be physically realized as a possible but highly
improbable object with curved surfaces. For example, the labelling given in
Figure 7.31(a) is physically realizable as an object with curved surfaces whose
horizontal and vertical cross-sections are shown in Figure 7.31(b) and (c), re-
spectively. If we assume, on the other hand, that all faces are planar, then we
can apply the wireframe-path constraint: a strictly positive wireframe path is
shown as a dashed line in Figure 7.31(a). We can see from this example that the
wireframe-path constraint applied to paths involving only two lines allows us
to impose the well-known geometrical constraint that two distinct planar faces
cannot share two non-collinear edges. Moreover, we can apply this constraint
even to faces with holes, which is not the case of systems based on finding face
circuits [106].

7.12 Tangential Edges and Surfaces

Another way of relaxing our assumptions on object shape is to allow object
edges and/or surfaces to meet tangentially. In the case of visible-line drawings,
a complete catalogue of labelled junctions has already been drawn up [34]. This
section gives a similar catalogue for wireframe projections.

When two surfaces intersect or merge along a simple curve, we call this a
TIC (tangential intersection curve). In order to avoid studying increasingly
large numbers of highly unlikely vertices, we consider only vertices formed by
the intersection of at most three surfaces S1, S2, S3 and disallow unnecessary
coincidences (such a TIC itself being tangential to another edge). As proved in
[34], this leaves five new types of vertices, where Eij represents the intersection
of the surfaces Si, Sj :

1. Eij tangential to Sk for all i, j, k = 1, 2, 3, and Eij tangential to Eik for
all i, j, k = 1, 2, 3.

2. S1 kisses S2 at a point.

3. S1 tangential to S2, and they also intersect along another edge (which
may or may not be a tangential edge).

170 CHAPTER 7. WIREFRAME PROJECTIONS

�
�
�

�
�
�
�

A

�
�
�

+
+

+
+
�
�
�

+
+

+
+
B

��

C
�
�
��

�
�
��

���
���

��

���
���

��

���
�
E ���

�

�
�

�
�

G

H

��

��

�
�
�

���
���

��
���

�

���
���

��

�
�
��

�
�
�

�
�

I

�
�
�

�
�
�

�
�
�

�
�
�

J

�
�
�

�
�
�

�
�
�

D

�
�
�
�
�
�

�
�

�
�

!
!
!!

K

�
�
�
�
�
�

�
�
��

�
�#
#
#
#
##

F

�
�

�
�

�
�
�
�

�
�
�
�

L
M

Figure 7.32: Examples of vertices formed by tangential edges and/or surfaces.

7.12. TANGENTIAL EDGES AND SURFACES 171

4. S1 tangential to S2, and their TIC intersects S3.

5. Si tangential to Sj for all i, j = 1, 2, 3.

Junctions can also be formed by the intersection of a TIC with an extremal
edge: in other words, the two surfaces meeting at the TIC are tangential to the
viewing direction.

Examples of type 1 vertices, formed when three edges are all tangential, in-
clude vertices F , G, I, K in Figure 7.32. Examples of type 2 vertices, formed
when two surfaces kiss, include vertex M of Figure 7.32 and vertex P of Fig-
ure 7.18. Examples of type 3 vertices, formed when two surfaces are tangential
and also intersect along another edge, include vertices B, C of Figure 7.32.
Examples of type 4 vertices, formed when a surface intersects the tangential
intersection curve of two other surfaces, include vertices D, J , L of Figure 7.32.
Examples of type 5 vertices, formed when three surfaces are tangential, in-
clude vertices A, E of Figure 7.32. Vertex H in Figure 7.32 is an example of
a viewpoint-dependent vertex formed when the tangential intersection curve of
two surfaces is tangential to the viewing direction.

By exhaustion over all possible viewpoints, for each possible vertex of each
different type described above, we obtained the list of junction labellings given
in Figure 7.33. For brevity of presentation, we have not included in this figure
those labellings that can be obtained from labellings in Figure 7.33 by any
combination of rotation, reflection and depth reversal. For example, a terminal
junction may also be labelled −, which is obtained by depth reversal of the
labelling given in Figure 7.33. At a terminal junction a single line terminates.
At a 4-tangent junction, there is no discontinuity of curvature between the two
viewpoint-independent lines (labelled → and ←), but there is a discontinuity of
curvature between these two lines and the two extremal lines. At Y0, W0 and
W00 junctions, the 0 indicates an angle of zero degrees between the tangents to
two lines meeting at the junction. As pointed out in [34], at a Y0 junction either
all three lines have identical curvature or there is a discontinuity of curvature
between each pair of lines; therefore, in theory, there is no possible confusion
with a 3-tangent junction. In practice, of course, the legal labellings of a 3-
tangent junction as shown in Figure 7.8, its reflected version and a Y0 junction
should all be merged. In the valued constraint formulation of the problem, we
can penalize each such misclassification of a junction by some small positive
cost.

When two lines meet at a junction J and have different curvatures, J is
known as a curvature-L junction [109]. When two face patches of different cur-
vatures meet along a tangential intersection curve, they create what is known as
a smooth edge. In wireframe projections of objects with smooth edges, disconti-
nuities of curvature can occur on any type of line (concave, convex, occluding or
extremal), but this does not provoke a label transition. In other words, the two
lines meeting at a curvature-L junction have identical semantic and numerical
labels; it is for this reason that we do not need to include curvature-L junctions
in our catalogue of labelled junctions.

172 CHAPTER 7. WIREFRAME PROJECTIONS

terminal

+
m,n

C

+
m,n −m,n

x
m,n

x
m,n

4-tangent

m,n

m+1,n+1 m,n+2 m,n

�
�
��

�
�

L

m,n m,n �
�
��

�
�m,n m,n �

�
��

�
�m+1,n

m,n+1 �
�
��

�
�

+ +
m,n m,n

T
−

m,n+1 m,n

m+1,n

−
m,n m,n+1

m,n

2-tangent
+

−

m,n

m,n

m,n+1

m+1,n

Y0

+ +

+
m,n

m,n

m,n

+ −

+
m,n

m,n

m,n

+

m,n

m,n+1

m,n

−

m,n

m,n+1

m,n

+
m,n

m,n+1

m+1,n

W0

+

m,n

m,n+1

m,n
+
��

m+1,n

m,n+1

m,n

W00

− +

−

m,n

m,n

m,n

+

m,n

m,n+1

m,n

+

m+1,n

m,n+1

m,n

Figure 7.33: Labeled wireframe projections of vertices involving tangential edges
and/or surfaces (to which must be added all labellings obtained by any com-
bination of rotation, reflection and depth reversal). In the labellings of a C
junction, x is any semantic label.

7.13. RICH LABELLING SCHEME 173

It is interesting to note that Y0, W0 and W00 junctions do not have the
same set of labellings as Y or W junctions in the standard trihedral catalogue
given in Figure 7.6. Another important point is that, apart from 2-tangent
junctions, none of the junctions in Figure 7.33 can occur in wireframe projections
without tangential edges and/or surfaces. As with the tetrahedral catalogue,
this catalogue therefore tends to complement, rather than dilute, our trihedral
catalogue. Unfortunately, due to vertices created by two surfaces kissing at
a point, as illustrated in Figure 7.18, transitions between convex and concave
labels can occur at any point on any curved line. Fortunately, the straight-
edge formation assumption (which says that all straight edges in 3D are formed
by the intersection of locally planar surfaces) in conjunction with the general
viewpoint assumption, excludes +/− transitions on straight lines. By expressing
the labelling problem as a valued constraint satisfaction problem, we can assign
a cost c > 0 to each +/− transition in order to find the labelling with the least
number of such transitions.

7.13 Rich Labelling Scheme

In Chapter 5 we described a rich labelling scheme for visible-line drawings, in
which the aim is not only to assign semantic labels to lines but also to identify
locally planar surfaces as well as their gradient directions. This section extends
this labelling scheme to wireframe projections. The basic principles remain the
same, but certain constraints have to be adapted since in wireframe projections
all lines are visible.

The planarity constraints, given in Figure 5.5, still hold except for the con-
straints involving C junctions and curvature-L junctions since these two types
of junctions do not occur in wireframe projections. In the rest of this section
we assume that drawings have been produced by orthographic projection. If a
plane has equation

z = px + qy + r,

then (p, q) is known as its gradient [107]. It is well known that gradient space
analysis provides necessary but not sufficient conditions for a drawing to be
realizable as an orthographic projection of a polyhedral scene, due to the fact
that the third parameter r is ignored [155]. The gradient direction of a plane P
is the direction in the image plane of the projection of the normal to P . It is
given by tan−1(q

p) and is hence even less informative than the gradient (p, q).
Although gradient directions provide an incomplete description of planes, we
have shown in Chapter 5 how they can be incorporated into a discrete labelling
scheme to enrich the classical semantic labels (convex, concave, occluding, etc.).

The gradient-direction constraints given in Chapter 5 have to be rewritten,
since in wireframe projections all three lines are always visible at a viewpoint-
dependent vertex. The new constraints are given in Figure 7.34. These con-
straints only hold under the assumption that the surface-normal discontinuity
edges L1, L2 are orthogonal. The top four constraints in Figure 7.34 simply
translate the following simple geometrical observation: if three straight edges

174 CHAPTER 7. WIREFRAME PROJECTIONS

��
�

��
�L1 L2

p

=⇒

��
�

��
�p↓

or

��
�

��
�p↑

��
�

��
�L1 L2p

=⇒
��

�
��

�
p↓ or

��
�

��
�
p↑

��
�

��
�L1

L2

p
=⇒

��
�

��
�

p ↓

or
��

�
��

�
p ↑

��
�

��
�L1

L2

p =⇒
��

�
��

�p ↓

or
��

�
��

�p ↑

•
�

��
��

+
p

L1 L2

⇐⇒
•

p→

•
�

��
��

−
pL1 L2

or
⇐⇒

•

p←

•��
��

�
−

pL1 L2

•��
��

�
+

pL1 L2

⇐⇒
•

p→

Figure 7.34: Gradient-direction constraints in wireframe projections assuming
that the surface-normal discontinuity edges L1, L2 are orthogonal. The ⇐
implications are consequences of the general viewpoint assumption.

7.13. RICH LABELLING SCHEME 175

E1, E2, E3 meet at a vertex V , where edges E1, E2 are orthogonal, then the
normal n at V to the surface S passing through E1, E2 is parallel to E3. We
symbolize the gradient direction (the direction of the projection of n) by a short
arrow next to the ‘p’ on the right-hand side of Figure 7.34. The constraints still
hold even if any number of the three lines L1, L2, L3 meeting at the junction are
curved (under our assumptions that object surfaces are piecewise C3 and that
edges and surfaces meet non-tangentially), in which case E1, E2, E3 represent
the tangents to the edges at V .

The bottom three constraints shown in Figure 7.34, reading the implication
from left to right, all concern a labelled 3-tangent junction formed by the projec-
tion of a curved orthogonal edge E which is the intersection of a curved surface
Sc with a planar surface Sp. Let P represent the 3D point on E at which the
tangent to Sc passes through the viewpoint, and let TP represent this tangent.
If n is the normal to the planar surface Sp, then by orthogonality of E, n is
parallel to TP . It follows that the projection of n in the drawing is parallel to
the extremal edge (which is the projection of TP). Note that, since the lines L1,
L2 are projections of the same edge E, planarity and gradient-direction labels
propagate through 3-tangent junctions.

Each side of each line L has a label representing the gradient direction of
the corresponding surface. Consider a line L joining two junctions J1, J2. The
gradient direction of each side of L is either parallel to (the tangent to) one of
the lines meeting at J1 or J2, or otherwise is assigned the label ‘other’. Hence,
gradient directions also lie in finite domains and can be incorporated into our
valued constraint satisfaction formulation and found by complete intelligent
branch-and-bound search [115].

The gradient-direction/semantic-label constraints, given in Figure 5.8, re-
main valid for wireframe projections. Perkins [130] observed that only certain Y
and W junctions can be projections of cubic corners (trihedral vertices at which
three surfaces meet orthogonally). The most succinct statement of Perkins’s
rules is that when the three lines meeting at a Y or W junction J (a projection
of a cubic corner) are extended through J , then no three of the resulting six
half-lines lie within an angle of π

2 [103]. When we try to interpret the three lines
meeting at such a junction J as projections of orthogonal edges, the combination
of the gradient-direction constraints and the gradient-direction/semantic-label
constraints leads to a contradiction. Hence by applying our constraints we au-
tomatically apply Perkins’s rule.

As in the case of visible-line drawings, each of the constraints given in Fig-
ures 5.5, 7.34, 5.8 is a strict constraint. They must be combined with soft unary
constraints expressing a preference for locally planar surfaces, planar faces and
orthogonal edges. For example, each ‘c’ line label and each non-orthogonal line
should be penalized by a non-zero cost.

We now demonstrate how it is possible to apply the wireframe-path con-
straint to drawings of curved objects by stipulating that path Π lies in locally
planar surfaces.

Definition 7.24 Let ε be a distance which is small compared to all line lengths

176 CHAPTER 7. WIREFRAME PROJECTIONS

in a wireframe projection. A face-circuit fragment in a semantically and nu-
merically labelled wireframe projection is a depth-labelled locus of points Π, such
that:

1. Every point P of Π lies at a distance ε from some line LP . If LP is
labelled (+,m, n) or (−,m, n), then the depth-label mP of Π at P satisfies
mP = m and Π lies either to the right or left of LP ; if LP is labelled
(↑,m, n) (respectively (↓,m, n)), then mP ∈ {m,m+ 1} and Π lies to the
right (left) of LP .

2. All intersections on Π are null intersections, of the form shown in Fig-
ure 7.25(b).

A face circuit is a face-circuit fragment which is a closed curve. A face-circuit
fragment Π is locally planar if at every point P of Π the object surface at depth
mP is locally planar at LP . Note that when line LP is labelled (↑,m, n) and the
depth label of Π at P is m+ 1, then, by our convention, the planarity label ‘p’
is written on the opposite side of line LP to Π. In all other cases, the planarity
label ‘p’ lies on the same side of LP as Π.

A face-circuit fragment Π follows a sequence of lines in a wireframe projec-
tion. Let L1, L2 be two consecutive lines in this sequence. They necessarily
meet at a junction J . Let E1, E2 be the edges which project into L1, L2, let V
be the vertex which projects into J and let S be the surface on which E1 and E2

both lie. Suppose that, for i ∈ {1, 2}, S has a constant tangent plane Ti along
the length of Ei (i.e. S is locally planar along Ei). Assuming that S is C3 at V ,
and that E1, E2 are not tangential, the tangent planes T1, T2 must be identical.
We can now state a constraint which allows us to propagate gradient-direction
labels.

Gradient-direction propagation constraint: In an orthographic wireframe
projection of an object composed of C3 surfaces/edges meeting non-tangentially,
gradient-direction is constant along a locally planar face-circuit fragment Π.

The wireframe-path constraint, as stated earlier in Section 7.10, only applies
to drawings of polyhedral objects. We can easily generalize it to drawings of
objects with some curved faces (involving only C3 surfaces/edges meeting non-
tangentially) by stipulating that path Π must lie on locally planar surfaces. Path
Π must be a sequence of locally planar face-circuit fragments joined together at
strictly positive or null intersections.

Figure 7.35(a) and (b) are two examples of wireframe projections of objects
involving some curved and some planar surfaces. Applying the outer-boundary
constraint and the catalogue of legal labellings provides a unique semantic
and numerical labelling (modulo depth reversal) for both of these drawings.
These labellings are shown in Figure 7.35(a),(b). Also applying the planarity
constraints, the gradient-direction constraints, the gradient-direction/semantic-
label constraints and the gradient-direction propagation constraint allows us to
determine the optimal interpretations of these two drawings. Figure 7.35(a)
has two equally likely interpretations, shown in Figure 7.35(c),(e). In order to

7.13. RICH LABELLING SCHEME 177

�
�
��

�
�
��

�
�
��

�
�
��

(a)

+

−
+

+
−

−����

����

��
��

0,0

0,0

0,0

0,0
0,0

0,0

0,1

0,1

0,1

1,0

1,0

1,0

�
��

�
��

�
��

�
��

(b)

++ +

+ +
−
����

����

��
��

		
��

����
0,0

0,0

0,0

0,0

0,0
0,0

0,1

0,1 0,1

0,1 0,1

1,0

�
�
��

�
�
��

�
�
��

�
�
��

(c)

↓

↓
↓

↓↓

↓

↑

↑

↑p
↑p

↑p

↑p

c

c
c

c

↓

↓ ↓
↓↓

↓

↑

↑
�
��

�
��

�
��

�
��

(d)

c

c
c

c
p

p

p

p↑

↑

↑
↑

↓

↓ ↓

↓
↑

↑

↑

↑

↓
↓ ↓

↓ ↓
↓↓

↓

�
�
��

�
�
��

�
�
��

�
�
��

(e)

↓

↓
↓

↓↓

↓

↑

↑

↑p

↓p

↑p

↓p

c
c

c

c

↓

↓ ↓
↓↓

↓

↑

↑
�
��

�
��

�
��

�
��

(f)

orth(L1)=orth(L2)=false

p

pp

p
c

c

c

c
L1

L2

↓

↓↓

↓

↓

↓↓

↓

↑

↑

↑

↑

↓
↓ ↓

↓

Figure 7.35: (a), (b) Two wireframe projections with their semantic and nu-
merical labellings; (c), (e) two equally likely interpretations of the wireframe
projection in (a); (d), (f) two interpretations of the wireframe projection in (b),
(d) being the most likely since all edges are orthogonal.

178 CHAPTER 7. WIREFRAME PROJECTIONS

avoid cluttering up the figures, we have omitted ‘p’ labels on straight lines. In
both interpretations (c) and (e), all edges are orthogonal, the ambiguity lying
in whether it is the top and bottom faces which are planar or the front and back
faces. Figure 7.35(b) has a unique optimal labelling, shown in Figure 7.35(d),
in which all edges are orthogonal. Figure 7.35(f) is an example of a non-optimal
interpretation, involving two non-orthogonal edges. In (d) the top and bottom
faces are planar, whereas in (f) it is the front and back faces which are planar.

7.14 Discussion

We tested our labelling scheme on the 11 wireframe projections in Liu et al.’s
test set [105]. We applied the outer-boundary constraint so that all labels on the
outer boundary of the drawing were (↑, 0, 0) or (⇑, 0, 0). To avoid depth-reversal
ambiguity, we pruned the set of possible labellings of one junction on the outer
boundary so that it contained no pair of labellings such that one was the depth
reversal of the other. We prefer interpretations involving as much regularity
and structure as possible, since these are typical properties of objects which are
likely to be depicted in the drawing. Thus

• Each ‘c’ label incurs a cost c1, in order to maximize the number of locally
planar surfaces in the interpretation;

• Each line L with orth(L) = false incurs a cost c2, in order to maximize
the number of orthogonal edges;

• Each +/− semantic label transition between the two ends of a line L
incurs a cost c3;

• Each parS = false (meaning that the set of lines S which are parallel in
the drawing, to within a certain tolerance, are not projections of parallel
3D edges) incurs a cost c4.

The choice of the relative values of c1, c2, c3, c4 was not found to be critical,
since different types of constraints rarely enter into conflict with each other. We
therefore arbitrarily chose c1 = c2 = c3 = c4 = 1 in our trials.

We found that for polyhedral objects with only trihedral vertices, the junc-
tion catalogue was sufficient to produce an unambiguous labelling. However, for
objects involving tetrahedral vertices, the wireframe-path constraint was nec-
essary in order to avoid highly unlikely labellings as illustrated in Figure 7.31.
Although in each case the tetrahedral junction catalogue, together with the
wireframe-path constraint, was sufficient to unambiguously determine face cir-
cuits, much ambiguity nevertheless remained, particularly in deciding whether
edges were concave or convex.

As an illustration of this, consider the wireframe projection shown in Fig-
ure 7.36(a). Applying the wireframe-path constraint allowed us to correctly
identify all faces of the depicted object. It also allowed us to deduce that if CG
is convex then EF is concave. However, even assuming that CG is convex, all of

7.14. DISCUSSION 179

(a)

A

B

CD

E

F

G

%
%
%
%
%

�
�
��

#
#
#
#
##

�
�

�

%
%%

��

#
##

��

�
�
�

�
�
��

�
�
�

�
�

�
�

(b)

C

I

JK

*
*
*
*

*
*

L1

L2

(c)

*
*
*
*

J2 →

J1 →

Figure 7.36: (a),(b) Examples of wireframe projections; (c) a close-up of junction
J in (b).

the lines AE, DE, EB, BC, CD could be either concave or convex due to the
fact that the depth of A relative to the rest of the object is unknown. Liu et al.
[106] found Marill’s Minimum Standard Deviation of Angles [111] very effective
in finding the correct interpretation of this drawing. An alternative approach
which would work very well in this example is the search for symmetries [132].

Figure 7.36(b) is a circular version of the object depicted in Figure 7.36(a).
We need to make two important changes to our labelling scheme in order to
be able to interpret this drawing. Firstly, vertex H is the apex of a cone and
hence is disallowed by our assumption that object faces are C3 surfaces, since
surface curvature is undefined at H . We can nonetheless easily accommodate
apices of cones by adding a (⇑,⇓) labelling to the list of legal labellings of
L junctions given in Figure 7.33. Secondly, junctions I and J do not appear
in our catalogue. This is not surprising, since both I and J involve a pair of
3-tangent junctions which are so close together in the drawing that they appear
to be a single junction. Figure 7.36(c) shows a close-up of J , which shows
that what we see as a single junction J in Figure 7.36(b) is in fact a triangle
composed of two 3-tangent junctions J1, J2 and one X junction. In freehand
sketches, pairs of 3-tangent are often merged in this way. Any 4-line junction at
which two tangential lines appear to meet two other tangential lines can simply
be decomposed into

• Two 3-tangent junctions if the junction is a Peak-type junction (such as
I in Figure 7.36(b)),

• Two 3-tangent junctions and an X junction, as shown in Figure 7.36(c),
if the junction is a Multi-type junction.

180 CHAPTER 7. WIREFRAME PROJECTIONS

The wireframe-path constraint provides no useful information when applied
to the drawing in Figure 7.36(b) since most surfaces of the object depicted are
curved. There is no ambiguity in terms of face identification, but our junction
catalogue does not allow us to recognize that L1 is concave if and only if L2

is convex. The independent depth reversal of the top and the bottom of this
drawing can be avoided by augmenting our rich labelling scheme with a relative-
depth label for straight extremal edges, as described in Chapter 4 for polyhedral
objects. Assuming that L1, L2 are projections of orthogonal edges, if I is nearer
the viewer than K, then L1 is concave and L2 convex, otherwise L1 is convex
and L2 concave.

7.15 Conclusion

A wireframe projection provides a convenient means of representing a 3D object
from a single view. However, it is well known that, even given complete depth
information about lines, a wireframe model of a polyhedron is ambiguous. We
have shown, however, that a 3D wireframe model of a polyhedron with simple
trihedral vertices is unambiguous.

When a wireframe projection is human-entered, it is important to test its
physical realizability. In the case of curved objects, we have given necessary
and sufficient conditions for the physical realizability of a wireframe projec-
tion. However, a wireframe projection of an object with curved surfaces and
tetrahedral vertices often has a large number of physically realizable but highly
unlikely interpretations. This has led us to the introduction of constraints be-
tween distant lines based on planarity and the extension of traditional line labels
to include extra local information.

Our notion of interpretation is thus based on a labelling scheme involving

• The number of surfaces in front of and the number of surfaces behind each
edge;

• The classification of edges as convex, concave, occluding or extremal;

• The identification of locally-planar surfaces;

• The identification of orthogonal edges;

• The identification of surface-normal directions of locally planar faces.

The set of constraints presented in this chapter is not exhaustive. For exam-
ple, under perspective projection, the identification of vanishing points provides
strong constraints on the labellings of trihedral junctions [127], and under ortho-
graphic projection, constraints exist between pairs of junctions involving parallel
lines [43].

A possible extension of the labelling scheme would be to allow extra lines
representing discontinuities of surface curvature, as has already been done for
line drawings of opaque objects [32, 34]. However, perhaps the most important

7.15. CONCLUSION 181

future challenge remains the selection of the most likely 3D curved object among
the infinite family of objects which project into a given wireframe. A rich
labelling (as described in this chapter) is a good starting point but only provides
an incomplete description of a curved 3D object. We revisit the problem of
complete 3D reconstruction in Chapter 10.

Chapter 8

Simplification of
Combinatorial Problems

8.1 Transformations of Combinatorial Problems

When faced with an instance I of a theoretically intractable problem, one strat-
egy is to transform I into an equivalent but simplified instance I ′. Examples of
such simplifying reductions are

Consistency: elimination of values or tuples which cannot be extended to a
global consistent labelling,

Soft consistency: shifting of weights among different cost functions in order
to obtain a better lower bound,

Substitution operations: elimination of domain values which are inessential
in the sense that they can always be replaced by another value in any
global solution.

Reduction operations may be applied just once as a preprocessing step before
embarking on a complete search, or at every node of the search tree. Clearly,
such operations should only be applied if, on average, the time gained by the
resulting decrease in the size of the search tree outweighs the time required to
actually apply the reduction operations.

The constraint satisfaction problem (CSP) is a generic combinatorial prob-
lem with many applications in artificial intelligence [137] and operations re-
search. It provides an ideal framework for expressing the line drawing labelling
problem when all constraints are crisp. It has been generalized to the valued
constraint satisfaction problem (see Definition 8.16, below) which allows us to
mix crisp constraints and soft preference constraints.

Definition 8.1 A constraint satisfaction problem (CSP) is a tuple 〈N,D,C〉
where N = {X1, . . . , Xn}, each variable Xi ∈ N has a domain di of possible

183

184 CHAPTER 8. SIMPLIFICATION OF COMBINATORIAL PROBLEMS

�
�

���
�

��

�
�

��

�
�

��

�
�

��

P SP
{r, g} {r, y}

F
{r, b}

IT
{r, g}

SW
{r}

G
{r, y}

IR
{o, g}

UK
{r, b}

B
{r, y}

NE {r, b}

6

�
�

���
�

��

�
�

��

�
�

��

�
�

��

P SP
{r, g} {r, y}

F
{� r, b}

IT
{� r, g}

SW
{r}

G
{� r, y}

IR
{o, g}

UK
{r, b}

B
{r, y}

NE {r, b}

Figure 8.1: Example of local reduction operations applied to a CSP.

values, and C is a set of constraints. Each constraint 〈I, RI〉 ∈ C is defined
over a set of variables M ⊆ N (its scope) as a relation RM of tuples of values
that may be simultaneously assigned to the variables in M .

Notation: Given an assignment t : N → d1× . . .×dn to the variables N and a
subsetM = {Xi1 , . . . , Xim}⊆N , we write t[M] to represent 〈t(Xi1), . . . , t(Xim)〉.
To avoid cumbersome notation, we write t[i] or simply ti, instead of t(Xi), to
denote the value assigned to the ith variable. For the same reason, we use Rij

as a synonym of R{i,j}.

An assignment t satisfies a constraint 〈M,RM 〉, if t[M] ∈ RM . A solution
to a CSP is an assignment to its variables that satisfies all its constraints.

Example 8.2 Consider the problem of colouring a map of western Europe so
that each country is assigned a colour among the main colours on its national
flag (excluding black and white). This problem can be expressed as the CSP
shown on the left-hand side of Figure 8.1, in which the domain of the ten
variables are shown as the initial letters of the colours that can be assigned to
the corresponding country and a line between adjacent countries represents a
not-equal-to constraint. The fact that Switzerland must be assigned the colour
red implies that we can eliminate red from the domain of its neighbours: Italy,
France and Germany. These eliminations propagate. For example, we can now
eliminate the colour blue from the domain of the United Kingdom and the
colour yellow from the domain of Belgium, which, in turn, implies that red
can be eliminated from the domain of the Netherlands. The resulting reduced
problem is said to be arc consistent.

If we require only one solution, we can eliminate domain elements which are
not essential for finding a solution. For example, in any colouring of the map
in which Spain is assigned red, we can change this colour to yellow to obtain
another valid colouring since yellow is consistent with all possible colours in the

8.2. WHEN LOCAL REDUCTIONS SUFFICE 185

domains of Spain’s neighbours. Eliminating red from the domain of Spain is an
example of a neighbourhood substitution operation. Such eliminations can also
propagate. �

8.2 When Local Reductions Suffice

Certain combinatorial problems can be solved by reduction operations alone, in
the sense that in the subsequent search no backtracking is required. To illustrate
this, we describe the classical tractable problem HORNSAT.

An instance of SAT is given by a conjunction of clauses (disjunctions of
literals), where a literal is either a variable or the negation of a variable. In an
instance I of SAT, if a clause only contains one literal l1, we can clearly assign
the value true to l1. Knowing that l1 = true, we can now replace each clause
of the form (¬l1 ∨ l2 ∨ . . .∨ lk) by (l2 ∨ . . .∨ lk) and simply delete each clause of
the form (l1 ∨ l2 ∨ . . .∨ lk) (since it is clearly satisfied). This operation is called
unit propagation. These reduction operations can propagate (if k = 2). If we
produce an empty clause, this is a contradiction, which implies that I has no
solution. Otherwise, we end up with a reduced instance I ′ equivalent to I.

Definition 8.3 A Horn clause is a clause containing at most one positive lit-
eral.

The following are examples of Horn clauses: (X1), (X1∨¬X2), (X1∨¬X2∨
¬X3), . . . , (¬X1), (¬X1 ∨ ¬X2),

Definition 8.4 HORNSAT is the set of instances of SAT in which each clause
is a Horn clause.

HORNSAT can be solved in polynomial time by applying unit propagation
until convergence and then, if no contradiction (empty clause) has been pro-
duced, by assigning the value false to all unaffected variables. With the use of
appropriate data structures, HORNSAT can be solved in time which is linear
in the number of clauses [58].

Horn clauses have been generalized to non-boolean domains (Section 9.1.2).
Certain other restrictions on the types of constraints that can occur in a CSP
also give rise to tractable problems. For example, CSPs with 0/1/all constraints
(a generalization of 2SAT to non-boolean domains, described in detail in Sec-
tion 9.1.1) can be solved by establishing consistency on all 3-variable subsets
of the variables [46, 91]. In fact, the classes of constraints for which local con-
sistency ensures global consistency have been completely characterized [85, 65].
The now substantial body of work on tractable classes of hard constraints has
recently been surveyed by Cohen and Jeavons [25].

186 CHAPTER 8. SIMPLIFICATION OF COMBINATORIAL PROBLEMS

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�
A B

C

DRAWING

��7

6
STEP 2

STEP 1

A

B

C

−

−
−

−

−

−

−

−

−
−

−

−

+

+

+

+

+

+

+

+ +
+

+

+ +

��
�� ��

��
��
��

��
��

��
��

��
��

��
��

���� ����

���� ����

���� ����

���� ����

����

Figure 8.2: Arc consistency operations applied to a simple line drawing la-
belling problem. The drawing is shown (in the centre) together with the sets of
labellings for the three junctions A, B, C.

8.3. ARC CONSISTENCY 187

8.3 Arc Consistency

Figure 8.2 shows an example of the use of arc consistency on a simple line
drawing labelling problem. Each of the six junctions of the drawing is a variable
to which we have to assign a legal labelling so that adjacent junctions assign
the same semantic label (+,−,→,←) to the line between them. The drawing
is shown in the centre, and the lists of possible labellings of each of the three
junctions A, B, C are given within rectangular boxes. We assume that these
junctions are projections of trihedral vertices. Two of the legal labellings of
B can be immediately eliminated since in the possible labellings of A, line AB
cannot be labelled with a left-pointing arrow (STEP 1 in Figure 8.2). Because of
these eliminations from the list of labellings of B, we can deduce line BC cannot
be labelled + (convex). This, in turn, reduces the set of possible labellings for
junction C (STEP 2 in Figure 8.2). We can now deduce that the central line of
junction C must be convex, since it is labelled + in the two remaining labellings
of C. After applying all possible arc consistency operations, we can deduce
that three convex edges meet at the central vertex of the object depicted in the
drawing.

Notation: If R is a relation on variables X1, . . . , Xr, and S ⊆ {X1, . . . , Xr},
then πSR represents the projection of R onto the variables S:

πSR = {〈xi1 , . . . , xis〉 : ∃〈x1, . . . , xr〉 ∈ R}.
When S is a singleton, we use the simpler notation πiR instead of π{Xi}R.

Definition 8.5 A binary CSP is arc consistent if each element of each domain
is compatible with at least one element of each of the other domains:

∀i, j (di ⊆ πi(Rij � dj)),

where di is the domain of variable Xi, Rij is the list of compatible assignments
to the pair of variables 〈Xi, Xj〉, and � is the standard relational join operator.

An arc-consistent CSP does not necessarily have a legal global solution.
Consider a graph-colouring problem on a triangle, in which each domain is
{r, g}. This CSP is arc consistent but has no solution.

Different algorithms have been proposed for establishing arc consistency in
binary CSPs. In Figure 8.3 we give a version of the algorithm AC-2001 [10]. For
simplicity of presentation, we suppose that each domain di = {1, 2, . . . , d}. An
essential ingredient of this algorithm is the data structure MinSupp(Xj, b,Xi)
= min{a ∈ di : (a, b) ∈ Rij}, which, for each b ∈ dj , records the smallest
element of domain di which is compatible with the assignment Xj = b. The
total number of iterations of lines (1) and (2) is O(ed2), where e is the number
of binary constraints in the CSP. The time complexity of AC-2001 is therefore
O(ed2). This is optimal in the sense that we need ed2 operations to read the
constraints of the problem instance.

188 CHAPTER 8. SIMPLIFICATION OF COMBINATORIAL PROBLEMS

Initialization() ; (* MinSupp(Xj, b,Xi) = 1, Q = {X1, . . . , Xn} *)

while Q �= ∅ do
extract Xi from Q ;
for each j such that ∃ constraint on {i, j} do

(1) for each b ∈ dj do
a := MinSupp(Xj, b,Xi) ;
while (a �∈ di or (a, b) �∈ Rij) and a ≤ d do

(2) a := a+ 1 ;
if a > d (* b has no support in Xi *)
then dj := dj − {b} ; Q := Q ∪ {Xj} end;
else MinSupp(Xj, b,Xi) := a ;

Figure 8.3: The algorithm AC-2001.

When a CSP contains non-binary constraints, we can use generalized arc
consistency instead of arc consistency. Recall that each constraint of a CSP is
a pair 〈M,RM 〉, where the constraint scope M is a subset of variables and the
constraint relation RM is the list of all compatible assignments to the variables
in M .

Definition 8.6 A CSP 〈N,D,C〉 is generalized arc consistent if for each con-
straint 〈M,RM 〉 ∈ C and for each variable Xi ∈M each element of the domain
di can be extended to an assignment belonging to RM .

Suppose that there is a constraint f(X1, . . . , Xk) = vrai on the variables
X1, . . . , Xk. The basic operation in establishing generalized arc consistency is
the following consistency test: for a ∈ d1

∃ (a2, . . . , ak) ∈ d2 × . . .× dk such that f(a2, . . . , ak) = vrai?

In the most general case, this consistency test is exponential in k. Nevertheless,
for certain types of constraints this test can be performed in time which is
a polynomial function of k [163]. For example, if f is a SAT clause, such as
X1∨ . . .∨Xi∨¬Xi+1∨ . . .∨¬Xk, then the consistency test is an O(k) operation.
In SAT, generalized arc consistency can be established in time which is linear in
the size of the original instance by applying unit propagation until convergence.

Another common example is the AllDiff constraint [133], which is equivalent
to ∀ i, j ∈ {1, . . . , k} Xi �= Xj . In this case, there is an O(k1.5d) algorithm for
the consistency test:

1. Establish a bipartite graph 〈V1∪V2, E〉 with a node in V1 for each variable
Xi, a node in V2 for each domain value v and an edge {Xi, v} ∈ E if v ∈ di.

2. Using Hopcroft and Karp’s maximal matching algorithm, find a maximal
matching M , i.e. a maximal set of non-intersecting edges {Xi, v}.

8.4. NEIGHBOURHOOD SUBSTITUTION 189

•

•

•

•

•

•

��������
�

�
�

�
�

� 3

2

1

X3

X2

X1

(a)
•

•

•

•

•

•

3

2

1

X3

X2

X1

(b)

Figure 8.4: Example of a consistency test in an AllDiff constraint using maximal
matching.

3. Check that |M | = k.

As a simple example, consider the 3-variable problem with domains X1 ∈ {3},
X2 ∈ {1, 2}, X3 ∈ {3} and the constraint AllDiff(X1, X2, X3). The correspond-
ing bipartite graph is shown in Figure 8.4(a). Since the size of the maximal
matching (shown in Figure 8.4(b)) is only 2, we can deduce that this problem
is inconsistent.

8.4 Neighbourhood Substitution

Arc consistency is ubiquitous in constraint processing. However, another, lesser-
known technique exists for domain reduction: neighbourhood substitution. Sub-
stitution reductions guarantee the conservation of at least one solution of a CSP
(if a solution exists) but do not conserve the set of all solutions.

Definition 8.7 A value a ∈ di is substitutable for b ∈ di if in every solu-
tion (global consistent labelling) replacing the assignment Xi = b with Xi = a
produces another solution. The corresponding substitution operation is the elim-
ination of b from domain di.

Detecting a valid substitution according to Definition 8.7 is NP-hard. We
therefore turn our attention to a local version, first defined by Freuder [66].

Definition 8.8 A value a ∈ di is neighbourhood substitutable for b ∈ di if for
each binary constraint 〈〈i, j〉, Rij〉 and for each z ∈ dj

(b, z) ∈ Rij =⇒ (a, z) ∈ Rij .

We write b→ a.

Example 8.9 Consider the 4-variable graph-colouring problem on the left of
Figure 8.5(a). The domain of the each variable is specified by listing the initial
letter of the colours that can be assigned to the variable. During the first step

190 CHAPTER 8. SIMPLIFICATION OF COMBINATORIAL PROBLEMS

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

r,b,o o o og,y g,y g,y g

b,y b,y b b

g,b g,b b b

6 6 6(a)

3

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

r r r rg,y g,y y y

b,y b b b

g,b g,b g,b g

6 6 6(b)

Figure 8.5: Two convergent sequences of neighbourhood-substitution operations
on the same graph-colouring problem.

we apply the neighbourhood substitutions r→o and b→o, to eliminate red and
blue from the domain of the leftmost node. Only after these eliminations can we
apply, in the second step, the neigbourhood substitutions y→b and g→b at the
top and bottom nodes, respectively. These eliminations then trigger the third
and final step, in which we apply y→g at the rightmost node.

Unlike arc consistency, the result of applying neighbourhood substitutions
until convergence is not unique. For example, Figure 8.5(b) shows another valid
sequence of eliminations by neighbourhood substitution applied to the same
graph-colouring problem. �

The following theorem, however, tells us that there is no best convergent
sequence of neighbourhood-substitution operations; the resulting CSPs are all
isomorphic in the sense that they can be made identical by renaming the ele-
ments of each domain.

Theorem 8.10 [33] Two convergent sequences of neighbourhood-substitution
operations applied to a CSP produce two isomorphic CSPs.

An algorithm to apply neighbourhood-substitution operations until conver-
gence exists with time complexity O(d3e) [33]. It employs the same basic opti-
mization techniques as for arc consistency but has a greater complexity since it
has to test all pairs (a, b) of domain elements to see whether a→ b.

If we want to apply both arc consistency and neighbourhood substitution to
the same problem, arc consistency should be established first. Indeed, an elim-
ination by neighbourhood substitution cannot destroy arc consistency, whereas
an arc consistency elimination can trigger new eliminations by neighbourhood
substitution. In fact, this result also holds for higher-order forms of consistency
[33].

8.5. SIMPLIFICATION OF SOFT CONSTRAINT PROBLEMS 191

Let E be the set of neighbourhood substitutions applied to a CSP.
Let Sol be the set of solutions to the reduced CSP.

L := Sol ;
while L �= ∅ do

Extract a solution x = (x1, . . . , xn) from L ;
for i = 1 to n do

for each x′i such that (x′i → xi) ∈ E do
if x′ = (x1, . . . , xi−1, x

′
i, xi+1, . . . , xn) satisfies

all constraints on variable Xi and x′ �∈ Sol
then add x′ to L and to Sol

end while

Figure 8.6: The algorithm Reconstruct to build the set of all solutions to
a CSP after having solved a reduced version resulting from applying a set of
neighbourhood-substitution operations.

In combinatorial problems the variables can have two very distinct meanings.
In resource allocation and planning problems, for example, variables are user-
controlled. On the other hand, in vision or diagnostic problems, variables repre-
sent predefined unknowns whose values the user is trying to discover. Neighbour-
hood substitution can accelerate the search for a single solution (which is clearly
useful in problems in the first category) and also the search for the existence of
at least one solution (which can be applied to all types of problems). What is
less obvious is that, even after having applied neighbourhood-substitution oper-
ations, we can still efficiently recuperate all solutions. It suffices to repeatedly
try to apply all neighbourhood substitutions in reverse to all global consistent
labellings. The resulting algorithm Reconstruct is given in Figure 8.6. Its
time complexity is O(N(de+ n2)), where N is the total number of solutions to
the CSP and n the number of variables (provided we use a tree data structure
to store Sol) [33].

8.5 Simplification of Soft Constraint Problems

The valued constraint satisfaction problem (VCSP) is a generic optimization
problem over finite domains with many applications in areas as diverse as artifi-
cial intelligence, operations research and biomathematics [115]. We have already
seen in Chapters 3, 4, 5, 7 how the problem of finding the most likely labelling
of a line drawing can be expressed as a VCSP.

Soft consistency operations transform a VCSP into an equivalent problem
by shifting weights between cost functions of different arities. The principal
aim is to produce a lower bound on the cost of any solution to the VCSP. A
good lower bound is an essential ingredient of a branch-and-bound search. For
example, establishing a directional version of soft arc consistency at every node

192 CHAPTER 8. SIMPLIFICATION OF COMBINATORIAL PROBLEMS

of the search tree allowed us to completely exhaust over search spaces of size
10350 in optimal planning problems [47]. In sketch-based modelling systems, the
user is unlikely to enter a sketch involving thousands of lines. We can therefore
envisage the possibility of an exhaustive search for the most likely labelling of
the line drawing derived from the sketch.

The notion of arc consistency, which has proved an invaluable tool in solving
CSPs, can be extended to the soft constraint framework in several distinct ways.
This is because, in general, an optimization problem does not have a unique soft
arc consistency closure and hence different compromises are possible between
computation time and strength of the resulting closure. Stronger notions of soft
arc consistency are obtained:

1. By sending weights in the same direction,

2. By splitting integer weights into fractional parts,

3. By simultaneously performing several operations at once,

4. By decomposing the original problem into the sum of subproblems.

The remainder of this chapter describes several different notions of soft arc
consistency based on these ideas.

8.6 Valuation Structures

Crisp yes/no constraints in the CSP are replaced by cost functions in the VCSP
[140]. A cost function returns a valuation (a cost, a weight or a penalty) for
each combination of values for the variables in the scope of the function. Crisp
constraints can still be expressed by, for example, assigning an infinite cost
to inconsistent tuples. The following definition of a valuation structure [140]
captures the minimal set of properties that a set of valuations must satisfy.

Definition 8.11 A valuation structure is a tuple 〈E,⊕,≥〉 such that

• E is a set, whose elements are called valuations, which is totally ordered
by ≥, with a maximum element denoted by � and a minimum element
denoted by ⊥;

• E is closed under a binary operation ⊕ that satisfies:

– ∀α, β ∈ E, α⊕ β = β ⊕ α; (commutativity)
– ∀α, β, γ ∈ E, α⊕ (β ⊕ γ) = (α⊕ β) ⊕ γ; (associativity)
– ∀α, β, γ ∈ E, α ≥ β ⇒ (α⊕ γ) ≥ (β ⊕ γ); (monotonicity)
– ∀α ∈ E, α⊕⊥ = α; (neutral element)
– ∀α ∈ E, α⊕� = �. (annihilator)

Note that in the semi-ring based constraint satisfaction problem (SCSP),
valuations satisfy the same properties except that they are only partially ordered
[11].

8.6. VALUATION STRUCTURES 193

Definition 8.12 An operator ⊕ is strictly monotonic if ∀α, β, γ ∈ E, (α >
β) ∧ (γ �= �)⇒ α⊕ γ > β ⊕ γ.

Examples of strictly monotonic aggregation operators include addition in
the non-negative reals with infinity, multiset union in the case of the leximin
version of the Fuzzy CSP [63] and the operator p ⊕ q = 1 − (1 − p)(1 − q) in
the probabilistic CSP [62]. We call a valuation structure strictly monotonic if
its operator is strictly monotonic. The simplest possible valuation structure is
〈{⊥,�},⊕,≥〉 (which is isomorphic to 〈{0,∞},+,≥〉). This valuation structure
is also strictly monotonic but only allows us to express crisp constraints.

Define the addition-with-ceiling operator +m as follows:

∀a, b ∈ {0, 1, . . . ,m} a +m b = min{a+ b,m}.

Then for m > 1, Sm = 〈{0, 1, . . . ,m},+m,≥〉 is a valuation structure in which
+m is not strictly monotonic, since (m− 1) < (m− 1) +m (m− 1) = m = � =
m+m (m−1). In a bounded version of MAX-CSP, penalties lie in the valuation
structure Sm [96]. It is a version of MAX-CSP in which all solutions which
violate m or more constraints are considered equally bad. This is a situation
which applies, for example, at a node of a branch-and-bound search tree on a
MAX-CSP problem where m is the number of constraints violated by the best
solution found so far.

Definition 8.13 [41] A valuation structure 〈E,⊕,≥〉 is discrete if for each
α ∈ E such that α < � there is a finite number of β ∈ E such that β ≤ α.

Clearly, a valuation structure is discrete if and only if it is countable.

Definition 8.14 [50] In a valuation structure 〈E,⊕,≥〉, if α, β ∈ E, α ≤ β
and there exists a valuation γ ∈ E such that α ⊕ γ = β, then γ is known as a
difference of β and α.

The valuation structure is fair if for any pair of valuations α, β ∈ E, with
α ≤ β, there exists a maximum difference of β and α. This unique maximum
difference of β and α is denoted by β � α.

For example, if ⊕ is addition in R
+∪∞, then � is subtraction of real numbers

(with ∞�∞ =∞). If ⊕ is max, then � is also max [139]. If ⊕ is +m, then �
is −m given by ∀α, β ∈ {0, 1, . . . ,m} such that m > α ≥ β, α−m β = a− b and
∀β ∈ {0, 1, . . . ,m},m− β = m [96, 97].

We use the following notation:

mα = α⊕ · · · ⊕ α︸ ︷︷ ︸
m

.

Definition 8.15 A valuation structure S = 〈E,⊕,≥〉 is rational if, for each
β ∈ E and for each integer n ≥ 1, there is a maximum element α ∈ E such that
nα = β. We write α = 1

nβ.

194 CHAPTER 8. SIMPLIFICATION OF COMBINATORIAL PROBLEMS

Let β be any element of a valuation structure S. Then, by the definition
of a valuation structure, mβ ∈ E for each non-negative integer m (with 0β
being understood to be ⊥). Hence a rational valuation structure contains all
non-negative rational multiples m

n β of its elements.
The valuation structure 〈N ∪{∞},+,≥〉, where N is the set of non-negative

integers, can be embedded in the rational valuation structure 〈Q+∪{∞},+,≥〉,
where Q

+ represents the set of non-negative rational numbers. Similarly, the
valuation structure Sk can be embedded in the rational valuation structure 〈Qk∪
{∞},+k,≥〉, where Qk is the set of rational numbers α satisfying 0 ≤ α < k.

Embedding a valuation structure in a rational valuation structure has the
advantage of enriching the set of available soft arc consistency operations, since
we can now project and extend fractional weights.

8.7 Valued Constraint Satisfaction

Definition 8.16 [50] A valued constraint satisfaction problem (VCSP) is a
tuple 〈N,D,C, S〉, where N is a set of n variables N = {X1, . . . , Xn}, each
variable Xi ∈ N has a domain of possible values di ∈ D, C is a set of constraints
and S = 〈E,⊕,≥〉 is a valuation structure. Each constraint 〈I, cI〉 ∈ C is
defined over a set of variables I ⊆ N (its scope) as a function cI from the
cartesian product of the domains di(Xi ∈ I) to E.

Purely for notational convenience, we suppose that no two constraints have
the same scope. This allows us to identify C with the set of scopes I of con-
straints cI in the VCSP.

Notation: For I ⊆ N we denote the cartesian product of the domains di

(Xi ∈ I) (i.e. the set of possible labellings for the variables in I) by L(I).

Let I ⊆ J ⊆ N with J = {Xj1 , . . . , Xjq} and I = {Xi1 , . . . , Xip}. Then,
given an assignment t = (tj1 , . . . tjq) ∈ L(J), recall that t[I] denotes the sub-
assignment of t to the variables in I, i.e. (ti1 , . . . , tip).

Definition 8.17 In a VCSP V = 〈N,D,C, S〉, the valuation (or cost) of an
assignment t ∈ L(N) is defined by

V alV (t) =
⊕

I∈C

cI(t[I]).

To solve a VCSP we have to find an assignment t ∈ L(N) with a minimum
valuation.

A CSP can be viewed as a VCSP over the idempotent valuation structure S1

(which is isomorphic to 〈{0,∞},+,≥〉). MAX-CSP, the problem of maximizing
the number of satisfied constraints in an over-constrained CSP, is a VCSP over
the valuation structure 〈N ∪ {∞},+,≥〉 in which the constraint functions can
only take on the value 0 or 1.

8.8. SOFT ARC CONSISTENCY TECHNIQUES 195

It has been shown [41] that if we restrict ourselves to discrete fair valuation
structures, then we need only provide consistency algorithms for VCSPs over
the valuation structures Sm and 〈N ∪ {∞},+,≥〉 (which we can write more
succinctly as S∞). These are exactly the valuation structures covered by the
WCSP framework [97, 54]. Thus, in the remainder of the chapter we assume that
the valuation structure of the VCSP to be solved is Sm for some m ∈ N∪ {∞}.

Definition 8.18 Two VCSPs V1 = 〈N,D,C1, S〉, V2 = 〈N,D,C2, S〉 are equiv-
alent if ∀t ∈ L(N), V alV1(t) = V alV2(t).

Definition 8.19 The subproblem of a VCSP 〈N,D,C, S〉 on J ⊆ N is the
problem VCSP(J) = 〈J,DJ , CJ , S〉, where DJ = {di : Xi ∈ J} and CJ = {I ∈
C : I ⊆ J}.

Definition 8.20 For a VCSP 〈N,D,C, S〉, an equivalence-preserving trans-
formation (EPT) on J ⊆ N is an operation which transforms the subproblem
VCSP(J) into an equivalent VCSP.

Figure 8.7 gives three basic equivalence-preserving transformations. When
t ∈ L(I) and Xi ∈ I, t[i] represents the value assigned to variable i by the
labelling t. If Xi ∈ I, we say that t ∈ L(I) is an extension of the assignment
(Xi, a) if t[i] = a. We write ci as a shorthand for c{i}. Project projects weights
from a valued constraint (on two or more variables) to a unary valued constraint:
an increase in ci(a) is compensated by a corresponding decrease in cI(t) for
each t such that t[i] = a. Extend performs the inverse operation, sending
weights from a unary valued constraint to a higher-order valued constraint.
Finally, UnaryProject projects weights from a unary valued constraint to
the nullary valued constraint c∅. This nullary constraint is independent of the
values assigned to variables and hence provides a lower bound on the cost of
any solution, which is an essential ingredient of branch-and-bound search.

In the valuation structure Sm, m�m = m. This means that when α = m,
our three basic equivalence-preserving transformations simply propagate incon-
sistencies (represented by the maximal cost m). Furthermore, Extend also sets
cI(t) to m if the sum of cI(t), the nullary cost c∅ and the unary costs ci(t[i]) is
equal to m.

8.8 Soft Arc Consistency Techniques

In this section we give the definitions of several different notions of soft arc
consistency (SAC). Note that certain of these notions have only been defined in
special cases, such as binary VCSPs. In the case of binary constraints, we write
cij as a shorthand for c{i,j}. The following two definitions are slightly modified
versions of the definitions given in [50], to allow for a constraint c∅ with empty
scope and to bring them in line with the general definition of consistency given
in [41].

196 CHAPTER 8. SIMPLIFICATION OF COMBINATORIAL PROBLEMS

Procedure Project(I, i, a, α)
(* Precondition: α ≤ min{cI(t) : t ∈ L(I) an extension of (Xi, a)} *)
ci(a) := ci(a)⊕ α ;
for each t ∈ L(I) an extension of (Xi, a) do

cI(t) := cI(t)� α ;

Procedure Extend(i, a, I, α)
(* Precondition: α ≤ ci(a) *)

for each t ∈ L(I) an extension of (Xi, a) do
β := c∅ ⊕ (

⊕
Xj∈I cj(t[j])) ;

cI(t) := (cI(t)⊕ β)� β ;
cI(t) := cI(t)⊕ α ;

ci(a) := ci(a)� α ;

Procedure UnaryProject(i, α)
(* Precondition: α ≤ min{ci(a) : a ∈ di} *)
c∅ := c∅ ⊕ α ;
for each a ∈ di do

ci(a) := ci(a)� α ;

Figure 8.7: The basic equivalence-preserving transformations required to estab-
lish different forms of soft arc consistency.

8.8. SOFT ARC CONSISTENCY TECHNIQUES 197

Definition 8.21 A fair VCSP 〈N,D,C, S〉 is generalized arc consistent if for
all I ∈ C such that |I| > 1 we have:

1. ∀t ∈ L(I), cI(t) = (cI(t)⊕ β)� β, where β = c∅ ⊕ (
⊕

Xj∈I cj(t[j]));

2. ∀Xi ∈ I, ∀a ∈ di, ci(a) = min{ci(a)⊕ cI(t): t ∈ L(I) is an extension of
(Xi, a)}.

If the VCSP is binary, then generalized arc consistency is known as (soft)
arc consistency.

Definition 8.22 A binary VCSP is directional arc consistent according to an
order < on the variables if for all cij such that i < j, ∀a ∈ di

ci(a) = min
b∈dj

((ci(a)⊕ cij(a, b)⊕ cj(b)⊕ c∅)� c∅).

Consider a fair binary VCSP with e binary constraints and maximum domain
size d. Then directional arc consistency can be established in O(ed2) time [50].

Definition 8.23 [39] A binary VCSP is full directional arc consistent (FDAC)
if it is both arc consistent and directional arc consistent.

Full directional arc consistency can be established in O(ed2) time if the
valuation structure is strictly monotonic (e.g. S∞) [39] and in O(end3) time if
the valuation structure is Sm (for finite m) [97].

The following definitions are slight generalizations of the definitions given,
respectively, in [97] and [54].

Definition 8.24 A VCSP is node consistent if ∀i,

c∅ = min{c∅ ⊕ ci(a) : a ∈ di}.

Definition 8.25 A binary VCSP is existential arc consistent (EAC) if it is
node consistent and if ∀i, ∃a ∈ di such that for all constraints cij,

ci(a) = min
b∈dj

((ci(a)⊕ cij(a, b)⊕ cj(b)⊕ c∅)� c∅).

Definition 8.26 [54] A binary VCSP is existential directional arc consistent if
it is both existential arc consistent and full directional arc consistent

Over the valuation structure Sm existential directional arc consistency can
be established in O(ed2 max{nd,m}) time [54].

Definition 8.27 [40] A binary instance of MAX-CSP P is 3-cyclic consistent
(3CC) if for all 3-variable subproblems J of P there is no EPT of J which
increases c∅ without introducing new constraints.

198 CHAPTER 8. SIMPLIFICATION OF COMBINATORIAL PROBLEMS

3-cyclic consistency can be established in O(d3n4) time on an instance of
MAX-CSP [40].

An essential difference between consistency in CSPs and consistency in
VCSPs is that the closure under the corresponding consistency operations is
unique in CSPs, but this is not, in general, the case for VCSPs [139, 50]. For
example, even for a 2-variable VCSP with domains of size 2, the arc consistency
and existential arc consistency closures are not necessarily unique. Similarly, for
problems with more than two variables, in general, neither the FDAC closure
nor the 3-cyclic consistency closure is unique.

Figure 8.8(a)–(c) illustrates the three techniques FDAC, EAC and 3CC. In
each case the VCSP on the left can be transformed into the equivalent VCSP
on the right by establishing the corresponding consistency property. In Fig-
ure 8.8(a) the VCSP on the right is obtained by establishing full directional arc
consistency, in Figure 8.8(b) by establishing existential arc consistency and in
Figure 8.8(c) by establishing 3-cyclic consistency. In each case the lower bound
c∅ is increased from 0 to 1. A line joining (Xi, a) and (Xj , b) represents a weight
ci,j(a, b) = 1 and a value α written next to a ∈ di represents ci(a) = α.

The VCSP on the left-hand side of Figure 8.8(a) is EAC and the problem on
the left-hand side of Figure 8.8(b) is FDAC, which proves that these two prop-
erties are complementary. Over domains of size 2, existential arc consistency
is subsumed by 3-cyclic consistency, but this is no longer the case for larger
domains. In 3-variable problems, 3-cyclic consistency subsumes existential and
full directional arc consistency but subsumes neither property when there are
more than three variables. Therefore all three techniques are potentially com-
plementary.

The classic use of consistency techniques in CSPs is to maintain the cor-
responding notion of consistency at every node of a search tree. In the case
of VCSPs, maintaining a form of soft consistency at every node of a branch-
and-bound search tree provides a lower bound c∅ on the cost of extending the
present partial assignment to a complete solution. Comparing this lower bound
with the cost of the best solution found so far allows us to prune the search
tree. From a practical point of view, both maintaining FDAC during search
and maintaining EDAC during search have proved their utility in various ap-
plications, such as frequency assignment, warehouse allocation [54] and optimal
planning [47]. They are part of public domain software devoted to solving soft
constraint problems [53].

8.9 Optimal Soft Arc Consistency

An arc consistency closure of a VCSP P is any VCSP obtained from P by prop-
agating inconsistencies and by repeated calls to Project and UnaryProject
until convergence.

Definition 8.28 An arc consistency closure of a VCSP P is optimal if it has
the maximum lower bound c∅ among all arc consistency closures of P .

8.9. OPTIMAL SOFT ARC CONSISTENCY 199

(a)

�

�

�

�
•
•

�

�

�

�
•
•

�

�

�

�
•
•

����
�

�
�

��
�

�
�

����
X1

X2

X3
6

�

�

�

�
•
•

�

�

�

�
•
•

�

�

�

�
•
•X1

X2

X3

c∅ = 1

(b)

�

�

�

�
•
•

�

�

�

�
•
•

�

�

�

�
•
•
�

�
�

�
1

1X1

X2

X3
6

�

�

�

�
•
•

�

�

�

�
•
•

�

�

�

�
•
•�

�
�

�

X1

X2

X3

c∅ = 1

(c)

�

�

�

�
•
•

�

�

�

�
•
•

�

�

�

�
•
•

����

�
�

�
�

�
��

2

X1

X2

X3
6

�

�

�

�
•
•

�

�

�

�
•
•

�

�

�

�
•
•

�
�

�
�

�
��

����
X1

X2

X3

c∅ = 1

Figure 8.8: Examples of (a) full directional arc consistency, (b) existential arc
consistency, (c) 3-cyclic consistency.

200 CHAPTER 8. SIMPLIFICATION OF COMBINATORIAL PROBLEMS

In [50] we proved that over a discrete valuation structure such as the non-
negative integers together with infinity, the problem of finding the optimal arc
consistency closure is NP-hard. However, we will show in this section that ex-
tending the valuation structure to include all rationals and extending our notion
of arc consistency closure allows us to determine an optimal arc consistency clo-
sure in polynomial time by a simple reduction to linear programming. From a
theoretical point of view, this result demonstrates that extending the valuation
structure not only allows us to produce better lower bounds but also avoids
intractability. As Werner [174] has pointed out, an equivalent result was first
published by Schlesinger (in Russian [142, 143]) for the finite-cost case. Ex-
perimental trials on both random problems and benchmark instances of the
frequency assignment problem indicate that, for particularly difficult-to-solve
instances, finding an optimal SAC transformation may even be of direct practi-
cal use, but only as a preprocessing technique [48].

Definition 8.29 Given a VCSP P , a SAC transformation is a set of soft arc
consistency operations (Extend, Project, UnaryProject) which when applied si-
multaneously transforms P into a valid VCSP.

Note that a VCSP is valid if all cost functions take values in the valuation
structure. For example, a negative cost is not valid. Affane and Bennaceur
[3] split integer costs by propagating a fraction wij of the binary constraint cij
towards variable Xi and a fraction 1−wij towards variable Xj (where 0 ≤ wij ≤
1) and suggested determining the optimal values of the weights wij . In a more
recent paper, Bennaceur and Osmani [8] suggested introducing different weights
wiajb for each pair of domain values (a, b) ∈ di × dj . It turns out that assigning
a different weight to each triple (i, j, a), where a ∈ di, allows us to find optimal
weights in polynomial time.

Theorem 8.30 If the valuation structure of a VCSP P is Q
+ ∪ {∞} (where

Q
+ is the set of non-negative rationals), then it is possible to find in polynomial

time a SAC transformation of P which maximizes the lower bound c∅, provided
the arity of constraints in P is bounded by a constant.

Proof: Firstly, as in [39], we can assume that all infinite costs have been
propagated using a standard generalized arc consistency algorithm [116]. Note
that we assume that cI(a) has been set to ∞ if ci(a[i]) = ∞ for some Xi ∈ I.
At this point no more infinite costs can be propagated in the VCSP by the
operations Extend, Project or UnaryProject.

We then want to determine the set of finite SAC operations which when
applied simultaneously maximizes the increase in c∅. For each I ∈ C such that
|I| > 1 and for each Xi ∈ I, let eI

i (a) be the sum of the weights extended from
ci(a) to cI minus the sum of the weights projected from cI to ci(a). Let ui be
the sum of the weights projected (by UnaryProject) from ci to c∅. Thus the
problem is to maximize

∑
i ui such that the resulting constraint functions take

8.9. OPTIMAL SOFT ARC CONSISTENCY 201

•
•
•

•
•
•

• •

• •

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

X1

X2

X3

X4

a

a

a

a

c

c

c

c

b b

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
��

��������������������

6

•
•
•

•
•
•

• •

• •

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

X1

X2

X3

X4

a

a

a

a

c

c

c

c

b b

+
+

+
+

+
+

+
+

,
,

,
,

,
,

,
,+

+
+

+
+

+
+

+

,
,

,
,

,
,

,
,

c∅ = 1

Figure 8.9: An example of a SAC transformation.

on non-negative values, i.e.

∀i ∈ {1, . . . , n} ∀a ∈ di ci(a)−
∑

(I∈C)∧(Xi∈I)

eI
i (a)− ui ≥ 0,

∀I ∈ C such that |I| > 1, ∀a ∈ L(I) cI(a) +
∑

Xi∈I

eI
i (a[i]) ≥ 0.

We can simply ignore the inequalities for which ci(a) = ∞ or cI(a) = ∞ since
they are necessarily satisfied. The remaining inequalities define a standard linear
programming problem with O(ed+n) variables (if e is the number of constraints,
n the number of variables and all domains are of size d) which can be solved in
polynomial time [19].

A weaker version of the above theorem, limited to 3-variable subproblems,
is the basis of the algorithm to establish 3-cyclic consistency [40].

It is important to note that there is a difference between SAC transforma-
tions and sequences of SAC operations: the former are stronger due to the fact
that several SAC operations applied simultaneously can produce a valid VCSP
even when no individual SAC operation can be applied. As an example, con-
sider the binary VCSP P over domains d1 = d3 = {a, b, c}, d2 = d4 = {a, c},
illustrated on the left-hand side of Figure 8.9. It can easily be verified that
P is soft arc consistent and that there are no unary weights. It follows that
no sequence of SAC operations (Extend, Project or UnaryProject) can be
applied to P . Nonetheless, applying the SAC transformation given by e232 (c) =
e343 (a) = e313 (b) = e121 (a) = e141 (c) = u4 = 1 and e233 (a) = e233 (b) = e344 (c) =
e311 (a) = e311 (c) = e122 (c) = e144 (a) = −1 produces an equivalent binary VCSP
Q, shown on the right-hand side of Figure 8.9. Since in Q we have c∅ = 1, in

202 CHAPTER 8. SIMPLIFICATION OF COMBINATORIAL PROBLEMS

�������
�
�

�
�

�

�
�

�
+

+
+

+

�
�
�

�
�

�

,
,

,
,

������

�
�

�
�

�

������
�

�
�

�
�
�

�
�

�

�
�

�

������

�
�

�

X6 X5

X7 X1 X4

X2 X3

�

�

�

�
•
•

�

�

�

�
•
•

�

�

�

�
•
•

�

�

�

�
•
•

�

�

�

�
•
•

�

�

�

�
•
•

�

�

�

�
•
•

•

(a)

6

	
	

	

�
�

�
�

�

������
�

�
�

������
	

	
	

�
�

�
�

�
�

�
�

�
�

�
�

X6 X5

X7 X1 X4

X2 X3

�

�

�

�
•
•

�

�

�

�
•
•

�

�

�

�
•
•

�

�

�

�
•
•

�

�

�

�
•
•

�

�

�

�
•
•

�

�

�

�
•
•

•

c∅ = 1

(b)

Figure 8.10: No sequence of SAC operations can be applied to the VCSP in (a),
but a set of simultaneous SAC operations transforms it into the VCSP in (b).

this example a SAC transformation increases the lower bound c∅ even though
no sequence of SAC operations can be applied to P .

Figure 8.10 gives another example. In this instance, there are three isomor-
phic subproblems on {X1, X2, X3}, {X1, X4, X5} and {X1, X6, X7}. For each
u ∈ d1, a SAC transformation on one of these 3-variable subproblems leads to
an increase in the unary cost c1(u).

We have seen that applying a set of SAC operations simultaneously (i.e. a
SAC transformation) leads to a stronger notion of consistency than applying a
set of SAC operations sequentially. An obvious question is whether another even
stronger form of consistency exists which transforms a VCSP into an equivalent
VCSP.

Definition 8.31 A VCSP P is in-scope c∅-irreducible if there is no equivalent
VCSP Q with the same set of constraint scopes as P and such that cQ∅ > cP∅
(where cP∅ , cQ∅ are the nullary constraints in P , Q).

Let VCSP(sm) denote a VCSP with a strictly monotonic aggregation oper-
ator ⊕.

Definition 8.32 [40] A VCSP(sm) is finitely bounded if for all valued con-
straints 〈S, cS〉, ∀x ∈ L(S), cS < �.

The following theorem is a direct consequence of Lemma 5.2 in [40].

Theorem 8.33 Let P be a finitely bounded binary VCSP(sm). If no SAC trans-
formation applied to P produces a VCSP Q with cQ∅ > cP∅ , then P is in-scope
c∅-irreducible.

8.10. VIRTUAL ARC CONSISTENCY 203

�

�

�

�
•
•

�

�

�

�
•
•

�

�

�

�
•
•

�
�

�
�

�
�

�
��

�
�

�

�
�

�
�

X1

X2

X3

Figure 8.11: A VCSP corresponding to the 2-colour graph-colouring optimiza-
tion problem on a triangle.

Thus, when all costs are finite rational numbers, the linear programming
approach can be used to establish in-scope c∅-irreducibility in binary VCSPs.
This is unfortunately not the case if infinite costs can occur. Consider, for ex-
ample, the graph-colouring problem on a triangle with two colours, expressed
as a VCSP with costs in {0,∞}. The problem is clearly inconsistent and hence
equivalent to a VCSP with a single constraint c∅ =∞, but no SAC transforma-
tion can be applied to this VCSP to increase c∅.

It should also be mentioned that forms of higher-order consistency have been
proposed for VCSPs [41] which can find a better lower bound than any SAC
transformation. This is at the cost of introducing higher-order constraints. Con-
sider the optimization version of the graph-colouring problem on a triangle with
two colours, equivalent to the VCSP in Figure 8.11, where a line represents a
cost of 1. The aim is to assign a colour to each node so as to minimize the num-
ber of pairs of nodes joined by an edge and assigned the same colour. No SAC
transformation applied to this VCSP increases c∅, whereas soft 3-consistency
produces a lower bound of c∅ = 1 [41]. One disadvantage of establishing soft
3-consistency is that some weights are now stored in ternary constraints.

Note that the special case of real-valued binary VCSPs over boolean domains
has been extensively studied under the name of quadratic pseudo-boolean func-
tion optimization [13]. In the case of boolean domains, it is well known that
finding an equivalent quadratic posiform representation (i.e. an equivalent bi-
nary VCSP) with an optimal value of c∅ can be formulated as a linear program-
ming problem [72] and can even be solved by finding a maximum flow in an
appropriately defined network [13]. It is also worth noting that in this special
case of boolean binary VCSPs, determining whether there exists a zero-cost so-
lution is an instance of 2SAT and hence can be completely solved in polynomial
time.

8.10 Virtual Arc Consistency

Definition 8.34 If P = 〈N,D,C, S〉 is a VCSP, then Bool(P) is the CSP
〈N,D,C〉, where 〈S,RS〉 ∈ C iff ∃〈S, cS〉 ∈ C with S �= ∅ such that ∀x ∈

204 CHAPTER 8. SIMPLIFICATION OF COMBINATORIAL PROBLEMS

L(S) (x ∈ RS ⇔ cS(x) ⊕ c∅ = c∅).

Bool(P) is a CSP whose solutions are exactly those n-tuples x such that
V alP (x) = c∅. For ease of comparison with the corresponding VCSP P , in
figures we will always represent Bool(P) as if it were a VCSP over the boolean
valuation structure 〈{0, 1},+,≥〉 with 0 < 1 and 1 + 1 = 1. In other words, a
line between (Xi, a) and (Xj , b) represents the fact that (a, b) is not a consistent
assignment to variables (Xi, Xj) and a weight of 1 next to (Xi, a) represents the
fact that a is not a consistent assignment to variable Xi.

Definition 8.35 A VCSP P is virtual (generalized) arc consistent if estab-
lishing (generalized) arc consistency in the CSP Bool(P) does not lead to an
inconsistency.

Note that, even if P is virtual arc consistent, then the arc consistency closure
of Bool(P) may still be of help in indicating which elements of domains neces-
sarily imply a non-zero cost. This information could be employed in variable
or value ordering heuristics which help to find the optimal solution (or at least
a good solution) sooner. Quickly finding a good (but not necessarily optimal)
solution is an essential ingredient of branch and bound, since it provides a good
upper bound on the value of the optimal solution. During branch and bound on
a VCSP with integer weights, the valuation structure is effectively Sm, where
m is the best upper bound found so far. A smaller value of m leads to more
pruning of the search tree.

If P is not virtual arc consistent, then we know by Theorem 8.30 that we
can theoretically find in polynomial time a SAC transformation that produces
an optimal value of c∅ (provided that the valuation structure can be embedded
in Q

+∪{∞}). In this section we present a low-order polynomial-time algorithm
which determines a sequence of SAC operations which necessarily increases c∅
if such a sequence exists. If no such sequence exists, then the VCSP is virtual
arc consistent.

When establishing SAC [50] we often have a choice as to the direction in
which we project or extend weights. Note that the name virtual arc consistency
comes from the fact that instead of making such choices, we effectively project or
extend simultaneously virtual weights in all possible directions, by establishing
arc consistency in Bool(P).

Consider the following instance P of MAX-SAT: ¬X1; X1∨¬X4; ¬X3∨X4;
X2; ¬X2 ∨X3. This VCSP is shown in the leftmost box of Figure 8.12. A line
joining (Xi, a) and (Xj , b) represents a cost cij(a, b) = 1. Unary costs ci(a) = 1
are noted next to the domain element (i, a). Note that P is existential directional
arc consistent and 3-cyclic consistent. However, establishing arc consistency in
Bool(P), as shown in Figure 8.12, leads to an inconsistency. The leftmost box in
Figure 8.12 also represents Bool(P) where now weights are interpreted as being
boolean values (i.e. either 0 or 1 with 1+1=1).

During establishment of arc consistency in Bool(P), the reason for each in-
consistency (i.e. a weight which changes from 0 to 1) is recorded. Suppose

8.10. VIRTUAL ARC CONSISTENCY 205

�

�

�

�•
•

�

�

�

�•
•

�

�

�

�•
•

�

�

�

�•
•����

����#######1

1

X1

X2

X3

X4

F

F

F

F

T

T

T

T
6

�

�

�

�•
•

�

�

�

�•
•

�

�

�

�•
•

�

�

�

�•
•����

����#######1

1

�������

�
�

��

�
�

�
�

��

1

1

X1

X2

X3

X4

6

�

�

�

�•
•

�

�

�

�•
•

�

�

�

�•
•

�

�

�

�•
•����

����#######1

1

�������

�
�

��

�
�

�
�

��

1

1

�
�

��

�
�

��

�
�

�
�

��

1

1
X1

X2

X3

X4

Figure 8.12: A VCSP P (leftmost box) which is full directional arc consistent,
existential arc consistent and 3-cyclic consistent but not virtual arc consistent,
as shown by establishing arc consistency in Bool(P).

that inconsistency in Bool(P) is first detected at X4. This means that by
SAC operations in P we can transform P into an equivalent VCSP in which
∀x ∈ d4, c4(x) ≥ λ. We can associate λ to each x ∈ d4 and trace back these
weights by, at each step, using the reason for inconsistency as recorded during
the establishment of arc consistency in Bool(P). This is illustrated in Fig-
ure 8.13(a). The algorithm halts when all weights have been traced back to a
non-zero weight in the original VCSP P . All the weights of λ shown in the final
box of Figure 8.13(a) correspond to non-zero weights in the original problem P .
The value of λ must not exceed any of these original weights. In this case the
maximal value we can assign to λ is clearly 1. The SAC operations illustrated
in Figure 8.13(b) can now be applied in reverse (i.e. in reverse order and with
each Extend replaced by Project and vice versa). This is illustrated in Fig-
ure 8.13(b). In the resulting VCSP we have c∅ = 1. This VCSP is easily seen
to be virtual arc consistent.

Unfortunately, establishing virtual arc consistency (VAC) may require the
introduction of fractional weights, as the following example illustrates. Consider
the instance P of MAX-SAT given by ¬X1; X1 ∨ ¬X2; X1 ∨ X3; X2 ∨ ¬X3.
This problem is illustrated in the leftmost box of Figure 8.14(a). As usual, each
line represents a cost of 1 and unary costs are noted next to the corresponding
domain element. Bool(P) is also represented by the same figure, where now
the value 1 is understood to be the element of the boolean algebra {0, 1} with
1 + 1 = 1. Figure 8.14(a) illustrates the process of establishing arc consistency
in Bool(P): arc consistency is established on the pairs of variables (X1, X2),
(X1, X3) and then on the pair (X2, X3), which leads to a domain wipe-out at
X3. We can therefore already deduce a lower bound of the integer value 1 for
the original problem P . However, in this example, no set of SAC operations
with integer weights produces a non-zero lower bound.

In order to determine a sequence of SAC operations which lead to an increase
in c∅, we have to retrace the steps made while establishing arc consistency in
Bool(P). Suppose that the final increase in c∅ in P is λ. We place a value of
λ at each element of d3, as illustrated by the leftmost box in Figure 8.14(b).

206 CHAPTER 8. SIMPLIFICATION OF COMBINATORIAL PROBLEMS

(a)

�

�

�

�•
•

�

�

�

�•
•

�

�

�

�•
•

�

�

�

�•
•

λ

λ

X1

X2

X3

X4

6

�

�

�

�•
•

�

�

�

�•
•

�

�

�

�•
•

�

�

�

�•
•

����#######

�
�

��

λ

λ λ

λ
X1

X2

X3

X4

6

�

�

�

�•
•

�

�

�

�•
•

�

�

�

�•
•

�

�

�

�•
•

����#######λ

λ

λλ

X1

X2

X3

X4

6

�

�

�

�•
•

�

�

�

�•
•

�

�

�

�•
•

�

�

�

�•
•

����#######

����

�
�

��

λ

λλ

λ

λ

X1

X2

X3

X4

6

�

�

�

�•
•

�

�

�

�•
•

�

�

�

�•
•

�

�

�

�•
•

����#######

����

λ

λλ

λ

λ

X1

X2

X3

X4

(b)

�

�

�

�•
•

�

�

�

�•
•

�

�

�

�•
•

�

�

�

�•
•����

����#######1

1

X1

X2

X3

X4

6

�

�

�

�•
•

�

�

�

�•
•

�

�

�

�•
•

�

�

�

�•
•

�������

����

�
�

�
�

��

1

1

X1

X2

X3

X4

6

�

�

�

�•
•

�

�

�

�•
•

�

�

�

�•
•

�

�

�

�•
•

�������

�
�

�
�

��

�
�

�
�

��
X1

X2

X3

X4

c∅ = 1

Figure 8.13: (a) Tracing back weights of λ from X4 until we arrive at non-zero
weights in the original VCSP P of Figure 8.12; (b) applying the corresponding
SAC operations in reverse to P .

8.10. VIRTUAL ARC CONSISTENCY 207

Retracing our steps, we know that these weights can be obtained by projec-
tion from the binary constraints c13 and c23 (as illustrated in the next box in
Figure 8.14(b)). If the corresponding weight in the original problem P was non-
zero, such as c13(F,F) and c23(F,T), then such weights do not need to be traced
back any further. We know that the other weights can be obtained by extension
from c1 and c2. A weight of λ has to be traced back further via c12 to c1. The
algorithm halts when all remaining weights were non-zero in the original VCSP
P (as shown in the last box in Figure 8.14(b)). We have traced a combined
weight of 2λ back to c1(T). Since c1(T)=1 in P , the maximum value we can
assign to λ is 1

2 . Applying these soft arc consistency operations in reverse to the
original VCSP P with λ = 1

2 , as shown in Figure 8.14(c), produces an equivalent
VCSP with c∅ = 1

2 .
The following theorem shows that if establishing arc consistency in Bool(P)

produces an inconsistency, then it is possible to increase c∅ by a sequence of
SAC operations.

Theorem 8.36 Let P be a VCSP over a rational valuation structure, with c∅ =
⊥. Then there exists a sequence of SAC operations which when applied to P
leads to an increase in c∅ if and only if the arc consistency closure of Bool(P)
is inconsistent.

Proof: ⇒: Let O1, . . . , Ot be a sequence of SAC operations in P which pro-
duce an equivalent VCSP with c∅ > ⊥. Let O′

1, . . . , O
′
t be the corresponding

arc consistency operations over a boolean valuation structure with the weight
being projected or extended always equal to the boolean value 1. Applying this
sequence of operations to Bool(P) (viewed as a VCSP over a boolean valuation
structure) inevitably leads to a domain wipe-out and hence inconsistency.
⇐: Let O1, . . . , Ot be a sequence of arc consistency operations in Bool(P)

which leads to an inconsistency (a domain wipe-out). We can assume without
loss of generality that no two of the operations Oi, Oj are strictly identical,
since the same arc consistency operation never needs to be applied twice in a
CSP. EachOi corresponds to an Extend, Project or UnaryProject operation
when Bool(P) is viewed as a VCSP over a boolean valuation structure. Let O′

i

be the corresponding SAC operation in P applied with a weight δ/ei, where
δ is the minimum non-⊥ weight occurring in P . We divide by e each time,
since a weight may need to be divided into smaller quantities to be extended
to all constraints involving the same variable (or projected to all variables in
the same constraint scope). After applying O′

1, . . . , O
′
t to P we necessarily have

c∅ ≥ δ/et > ⊥.

It may not seem that increasing c∅ by such a small amount as δ/et is worth-
while. However, if the original weights in P were all integers, then c∅ ≥ δ/et > 0
actually implies that V alP (x) ≥ 1, for all x, thus allowing us to increase the
lower bound used by branch and bound by 1.

Unfortunately, if the original weights in P were rationals rather than integers,
then finding an inconsistency in Bool(P) does not necessarily imply that we can

208 CHAPTER 8. SIMPLIFICATION OF COMBINATORIAL PROBLEMS

(a)

�

�

�

�•
•

�

�

�

�•
•

�

�

�

�•
•

����

�
�

�
�

��
1

X1

X2

X3

F F

F

T T

T
6

�

�

�

�•
•

�

�

�

�•
•

�

�

�

�•
•

����

�
�

�
�

��
�������
�

�
��

�
�

�
�

��

1

1

1X1

X2

X3
6

�

�

�

�•
•

�

�

�

�•
•

�

�

�

�•
•

����

�
�

�
�

��
�������
�

�
��

�
�

�
�

��

�
�

��

�
�

��
����

1

1

1

1

1

X1

X2

X3

(b)

�

�

�

�•
•

�

�

�

�•
•

�

�

�

�•
•

λ

λ

X1

X2

X3
6

�

�

�

�•
•

�

�

�

�•
•

�

�

�

�•
•

�������

�
�

��λ λ

�
�

�
�

��λ

λX1

X2

X3
6

�

�

�

�•
•

�

�

�

�•
•

�

�

�

�•
•
�

�
�

�
��λ

λ

λ

λX1

X2

X3

6

�

�

�

�•
•

�

�

�

�•
•

�

�

�

�•
•
�

�
�

�
��

����

�
�

��

λ

λ

λ
λ

λX1

X2

X3
6

�

�

�

�•
•

�

�

�

�•
•

�

�

�

�•
•
�

�
�

�
��

����

λ

λ

λ+ λ

λX1

X2

X3

(c)

�

�

�

�•
•

�

�

�

�•
•

�

�

�

�•
•

����

�
�

�
�

��
1

X1

X2

X3

6

�

�

�

�•
•

�

�

�

�•
•

�

�

�

�•
•

����

�
�

�
�

���
�

�
�

��

1
2

1
2

1
2

1
2

1
2 1

2

1X1

X2

X3

6

�

�

�

�•
•

�

�

�

�•
•

�

�

�

�•
•

����

�
�

�
�

���
�

�
�

��

����
1
2

1
2

1
2 1

2
1
2

1
2

c∅ = 1
2

X1

X2

X3

Figure 8.14: An example of a VCSP where virtual arc consistency produces
a better lower bound than FDAC, EAC and 3-cyclic consistency by allowing
fractional weights.

8.11. VAC DECOMPOSITION 209

increase the lower bound on V alP (x) by 1. We have seen in the example of
Figure 8.14 that applying a sequence of SAC operations found by our virtual
arc consistency algorithm may lead to the introduction of fractional weights in
the VCSP. We have to ensure that we avoid an infinite loop in which we make
smaller and smaller increases to c∅ each time. VAC can be tested in O(ed2) time
using an optimal arc consistency algorithm, such as AC-2001 (Figure 8.3) in
the CSP Bool(P). It can also, in theory at least, be established in polynomial
time via linear programming if the valuation structure can be embedded in
Q

+ ∪ {∞} by Theorem 8.30. An alternative and much less costly solution to
the problem of fractional weights is presented in Section 8.11.

Existential arc consistency [54] can be seen as applying virtual arc consis-
tency but limited to a single iteration of arc consistency in Bool(P). In EAC,
weights are transferred virtually from all variables to their neighbours; if a
unary projection with a non-zero weight is possible, then we trace back and
actually perform the necessary SAC operations. Thus EAC avoids the problem
of fractional weights by applying only a weak form of VAC.

8.11 VAC Decomposition

We have seen that there is no guarantee that our VAC algorithm will terminate
in a finite number of iterations, due to the possible introduction of smaller
and smaller fractional weights. However, we will show in this section that this
problem can be avoided while at the same time turning fractional values of c∅
to our advantage. Throughout this section we assume that all weights in the
original VCSP are non-fractional (i.e. integers or infinite).

Imagine a VCSP P consisting of 2k copies of the VCSP P3 illustrated in
Figure 8.14. The following analysis applies whether P is a 6k-variable VCSP
consisting of 2k non-intersecting copies of P3 or whether P is the same 3-variable
VCSP as P3 with all weights multiplied by 2k. Establishing VAC only produces
c∅ = k, and, in fact, no SAC transformation produces a better lower bound.
However, a lower bound of 2k is easily obtained by observing that P is the sum
of 2k integer-valued VCSPs each with a non-zero lower bound. We therefore
abandon the idea of finding a single equivalent VCSP. Instead we express the
VCSP as the sum of integer-valued VCSPs in order to obtain a better lower
bound while, at the same time, guaranteeing termination in polynomial time.

In the previous section we presented an iteration of our VAC algorithm as a
three-stage procedure: (1) search for an inconsistency in Bool(P), (2) trace back
the value of λ from c∅ until we reach non-zero weights in P , and (3) calculate
the value of λ and propagate forward in order to increase c∅ by λ. We adapt
this algorithm as follows.

Let Q be a copy of our original VCSP P . After tracing back weights in the
VCSP Q, instead of propagating weights in Q, we create another VCSP R (with

210 CHAPTER 8. SIMPLIFICATION OF COMBINATORIAL PROBLEMS

cost functions cR) defined as follows: for all constraint scopes I, ∀a ∈ L(I)

cRI (a) =

⎧
⎨

⎩

� if cQI (a) = � ∧ k(I, a) > 0,
1 if cQI (a) < � ∧ k(I, a) > 0,
0 otherwise,

where k(I, a) is the coefficient of λ associated with (I, a) after tracing back a cost
of λ in the VCSP Q. We then propagate in R. The VCSP R contains exactly
the set of weights which provoked the arc inconsistency in Bool(Q), and hence
propagating in R necessarily produces a VCSP R′ with cR

′
∅ = λ > 0. Since the

weights in R were non-fractional, we can deduce a lower bound of 1 for V alR.
We can then subtract out R from Q and repeat the process until Bool(Q) is arc
consistent (or cR

′
∅ = �). Since the VCSP Q always has non-fractional weights,

this process necessarily converges in finite time.
Let Ri (for i = 1, . . . , s) be the ith such VCSP which is subtracted out.

All weights in Ri belong to {0, 1,�}. The algorithm halts when the remaining
problem Q is virtual arc consistent. When this occurs the original VCSP can
be expressed as the sum

P ≡ Q⊕R1 ⊕ . . .⊕Rs

≡ Q⊕R′
1 ⊕ . . .⊕R′

s.

This basic idea can be improved in several ways. Firstly, in the case where
weights may be large integers, we can considerably optimize the algorithm.
When the weights cQI (a) corresponding to assignments (I, a) such that k(I, a) >
0 (i.e. those weights in Q which lead to an inconsistency in Bool(Q)) are all no
less than some integer w ≥ 2, then we can simultaneously subtract out w copies
of R from Q rather than tracing back and propagating w times.

Secondly, if the value of λ is 1, then we can simply apply the Traceback
and Propagate operations directly to Q, rather than creating a new problem
Ri.

Another improvement we can make to our basic algorithm follows from
Proposition 8.38 below, which tells us that the integer part of any weights in R′

i

can be added back to Q.

Definition 8.37 A VCSP S is integral if ∀x ∈ L(N) V alS(x) ∈ N ∪ {∞}.
An integral VCSP may nevertheless have cost functions which take on frac-

tional values. The VCSP shown in the rightmost box of Figure 8.14(c) is an
example.

Proposition 8.38 Let S be an integral VCSP. Suppose that 0 < cS∅ < 1 and
cSI (a) ≥ 1 for some particular (I, a). Let S′ be identical to S except that cS

′
I (a) =

cSI (a)− 1. Then V alS′ ≥ 1.

Proof: S′ is also clearly an integral VCSP with cS
′

∅ > 0. Hence V alS′ ≥ 1.

8.11. VAC DECOMPOSITION 211

Definition 8.39 Let P be a binary VCSP with non-fractional weights. A VAC
decomposition of P is a set of binary VCSPs Q,R1, . . . , Rs such that

1. P ≡ Q⊕ R1 ⊕ . . .⊕Rs;

2. Q has non-fractional weights and is virtual arc consistent;

3. Each Ri is integral, has weights in [0, 1) ∪ � (over a rational extension
of the valuation structure of P) with the nullary constraint satisfying 0 <
cRi

∅ < 1.

The following lemma is an immedaite consequence of the fact that an integral
VCSP Ri with cRi

∅ > 0 satisfies V alRi ≥ 1.

Lemma 8.40 If P = Q ⊕ R1 ⊕ . . . ⊕ Rs is a VAC decomposition of a binary
VCSP P , then cQ∅ ⊕ s is a lower bound on V alP , where cQ∅ is the nullary con-
straint in Q.

If P ≡ Q ⊕ R1 ⊕ . . .⊕ Rs is a VAC decomposition, we can apply any local
consistency operations to each of the VCSPs Ri. For example, if after applying
FDAC to Ri, some weight cRi

I (a) is now greater than 1, we can add 1 back
to cQI (a) (by Proposition 8.38). We can, of course, apply any form of local
consistency.

The following theorem follows from the fact that arc consistency can be es-
tablished in O(ed2) time in Bool(P). When the VAC decomposition algorithm is
integrated into a branch-and-bound search, it could be combined with dynamic
arc consistency algorithms [9] to improve efficiency.

Theorem 8.41 A VAC decomposition of a VCSP over the valuation structure
Sm can be determined in O(ed2m) time.

Li et al. [100] find a lower bound for a MAX-SAT instance P by effectively
establishing a form of generalized arc consistency in Bool(P). (In fact, they
apply a weak form of generalized arc consistency since clauses with identical
scopes are not merged into a single constraint). If a contradiction is detected,
then all clauses used are eliminated and the process iterates. Our algorithm
differs in that we do not subtract out whole constraints but only the weights
which are necessary to obtain a lower bound of 1. As a concrete example,
consider the instance of MAX-SAT given by X1; ¬X1 ∨ ¬X2; X2; ¬X1 ∨ ¬X3;
X3; ¬X2 ∨ ¬X3. The first three clauses are mutually inconsistent. Eliminating
these three clauses leaves the three mutually consistent clauses ¬X1 ∨¬X3; X3;
¬X2 ∨ ¬X3. Our VAC decomposition algorithm, on the other hand, effectively
replaces the first three clauses by X1 ∨X2 (thanks to the forward propagation
step which, in this example, simply establishes SAC on the the subproblem on
variables {X1, X2}). The remaining four clauses (X1 ∨ X2; ¬X1 ∨ ¬X3; X3;
¬X2 ∨ ¬X3) are mutually inconsistent, which allows us to find a total lower
bound of 2 instead of 1.

212 CHAPTER 8. SIMPLIFICATION OF COMBINATORIAL PROBLEMS

8.12 Soft Neighbourhood Substitution

A potentially important reduction operation in optimization problems is the
elimination from variable domains of values which are inessential for the con-
struction of an optimal solution.

Definition 8.42 If t ∈ d1× . . .× dn, then let t[i, a] represent the tuple t′ which
is identical to t except that t′i = a. In a VCSP, a value a ∈ di is substitutable
for b ∈ di if ∀t ∈ d1 × . . . × dn such that ti = b, the total cost of t[i, a] is no
greater than the total cost of t, i.e. V al(t[i, a]) ≤ V al(t). The corresponding
substitution operation is the elimination of b from domain di.

It is clearly NP-hard to test for substitutability in a VCSP. We therefore
define a tractable local version which is the generalization of neighbourhood
substitution from CSPs to VCSPs. We first require the following definition of
a total order on S × S, where 〈S,⊕,≥〉 is the valuation structure of the VCSP.
To gain a broad understanding of the remainder of this section, the reader can
think of (a, b) as representing a− b, where a and b are real numbers. However,
we cannot formally identify (a, b) with a− b or with a� b since < is defined over
all pairs (a, b), even when (a, b) = (∞,∞) or when b > a.

Definition 8.43 If 〈S,⊕,≥〉 is a valuation structure, then the relation < on
S × S is defined by

(a, b) < (c, d) ⇔ (a⊕ d < b⊕ c)
∨(a⊕ d = b⊕ c ∧ b > d)
∨(b = d = � ∧ a < c).

It was shown in [39] that < is a total order on S × S whenever ⊕ is strictly
monotonic (which is the case if ⊕ is the standard addition operation in R∪{∞}).

Definition 8.44 Consider a VCSP on a valuation structure 〈S,⊕,≥〉 with a
strictly monotonic aggregation operator ⊕. For a pair of values a, b ∈ di and
a constraint cP such that i ∈ P , define a best block of (b → a, i) on P to be
a tuple t ∈ L(P − {i}) such that (cP (a, t), cP (b, t)) is maximal according to the
total order < defined in Definition 8.1, where (a, t) represents the extension of
t in which Xi = a.

A best block of the neighbourhood substitution (b→ a, i) on P is a labelling
t of the variables in P − {i} such that

(cP (a, t), cP (b, t)) ≥ (cP (a, s), cP (b, s))

for all labellings s of P − {i}. It is a labelling of the variables in P − {i} which
least supports the substitution of b by a at Xi.

8.12. SOFT NEIGHBOURHOOD SUBSTITUTION 213

6 6

6 6

(a)

(b)

�
�

�
�

�
��

�
�

���
�

��

�
�

�
�

�
��

1

2 3

4 5 6

bw

bw w

b
bw

bw

�
�

�
�

�
��

�
�

���
�

��

�
�

�
�

�
��

1

2 3

4 5 6

b

bw w

b
bw

bw �
�

�
�

�
��

�
�

���
�

��

�
�

�
�

�
��

1

2 3

4 5 6

b

bw w

b
bw

b

�
�

�
�

�
��

�
�

���
�

��

�
�

�
�

�
��

1

2 3

4 5 6

b

bw w

b w b �
�

�
�

�
��

�
�

���
�

��

�
�

�
�

�
��

1

2 3

4 5 6

b

w w

b w b

Figure 8.15: (a) A graph-colouring problem considered as a VCSP; (b) a se-
quence of neighbourhood substitutions.

Definition 8.45 In a VCSP with a strictly monotonic aggregation operator ⊕,
given labels a, b ∈ di, a is neighbourhood substitutable for b at Xi if

⊕

P∈Ci

cP (b, tP) ≥
⊕

P∈Ci

cP (a, tP),

where each tP is the best block of (b→ a, i) on P , and Ci is the set of constraint
scopes P such that i ∈ P .

It is important to note that compensation can occur between the different
valued constraints in Ci; we do not require that a be substitutable for b in each
individual constraint cP . However, considering the VCSP as a whole, it is easy
to prove that if (b → a, i) is a valid neighbourhood substitution, then it is a
valid substitution according to Definition 8.42 [39].

When a is neighbourhood substitutable for b at Xi, the label b can be elim-
inated from di without any risk of increasing the cost of the optimal solution to

214 CHAPTER 8. SIMPLIFICATION OF COMBINATORIAL PROBLEMS

the VCSP. Such eliminations can propagate in the same way that eliminations
by neighbourhood substitution can propagate in CSPs. Figure 8.15(a) shows
a simple VCSP instance in which the aim is to colour the nodes of the graph
with just two colours while minimizing the number of pairs of adjacent nodes
assigned the same colour. Nodes 3 and 4 have only one possible label, whereas
all other nodes can be labelled either black or white (shortened to b and w in the
figure). Figure 8.15(b) shows that result of a sequence of neighbourhood sub-
stitutions. The label white can be eliminated from domains d1 and d6 because
one of the two adjacent nodes has the unique label white. The label black can
then be eliminated from domains d2 and d5 since two of the four adjacent nodes
have the unique label black. This is a particularly favourable example, since an
optimal solution is found without search.

Since a CSP is a just a VCSP over the valuation structure {⊥,�}, we can
also apply Definition 8.45 to a CSP. In this case, a label can be eliminated by
soft neighbourhood substitutability (Definition 8.45) if and only if it can be
eliminated by either crisp neighbourhood substitution (Definition 8.7) or crisp
generalized arc consistency (Definition 8.6).

Let c denote the number of constraints in the VCSP, d the maximum domain
size, and k (a constant) the maximum arity of the constraints. When costs
belong to R ∪ {∞}, a convergent sequence of eliminations by neighbourhood
substitutability can be found and applied in O(dk+2c) time and O(d2c) space
[39]. In VCSPs in which all costs are finite, such as MAX-CSP, arc consistency
produces a lower bound but does not immediately reduce the size of the search
space. Although neighbourhood substitution is more costly in time to apply, it
can actually reduce the size of the search space, by eliminating domain values,
before embarking on an exhaustive search.

8.13 Discussion

Arc consistency is today ubiquitous in constraint processing. It is interesting
to note that it first came to light as the result of pioneering work on line draw-
ing interpretation [173]. Moving away from the rather idealistic problems first
studied, towards the interpretation of realistic line drawings such as hand-drawn
sketches, has necessarily led to the introduction of optimization criteria. In this
book we have nevertheless retained one essential property of constraint satis-
faction problems, namely the finiteness of domains. We consider the discovery
of the topology of objects as well as the identification of properties such as
convex/concave edges, cubic corners, orthogonal edges, planar faces, etc. as
the most important part of picture interpretation. We have seen that all the
resulting finite-domain variables can be combined in a single VCSP.

Traditional arc consistency can be generalized in several different ways to
the valued constraint framework due to the fact that the arc consistency closure
is not unique. Four distinct ideas have been shown to be useful in finding a
better lower bound via SAC operations:

• Sending weights in the same direction (FDAC, EDAC)

8.13. DISCUSSION 215

• Allowing projections and extensions of rational (rather than integer) costs
(OSAC)

• Allowing simultaneous consistency operations (VAC)

• Decomposing the VCSP into the sum of problems (VAC decomposition)

OSAC is too costly in computational resources to be applied during search
but could be applied once before branch-and-bound search [48]. The best arc
consistency operation to apply during search varies from application to applica-
tion. In general, applying a stronger form of arc consistency requires more time
and hence may turn out to be counterproductive if only a small amount of extra
pruning of the search tree occurs. For example, FDAC, although weaker than
EDAC, was found to be slightly more efficient on optimal planning problems
[47]. On frequency assignment problems, on the other hand, EDAC was found
to be much more efficient than FDAC [54].

If a VCSP is virtual arc consistent, then this means that no sequence of SAC
operations could increase the lower bound c∅. In particular, FDAC and EDAC
cannot increase c∅ for any variable order. Thus VAC is certainly theoretically
stronger than FDAC and EDAC. Unfortunately, establishing VAC may lead to
the introduction of smaller and smaller fractional weights. We therefore suggest
finding a VAC decomposition since this is guaranteed to terminate and can even
provide a better lower bound than establishing VAC. A disadvantage of VAC
decomposition is that we no longer produce a single problem equivalent to the
original problem. Another practical solution is to establish VAC on Pε, where
Pε is identical to the original VCSP P except that all costs less than or equal
to ε are rounded down to zero. [49].

Chapter 9

Tractability of Drawing
Interpretation

9.1 Tractable Constraint Classes

In this section we introduce the basic theoretical tools that have been developed
for the analysis of the tractability of constraint satisfaction and valued constraint
satisfaction problems. In the next section we apply some of these results to
problems related to the interpretation of line drawings. A problem is considered
to be tractable if there is a polynomial-time algorithm to solve it, and intractable
if not. Assuming NP �=P, any problem that is NP-hard is intractable.

9.1.1 Zero/One/All Constraints

We can consider the class of zero/one/all (ZOA) constraints to be a generaliza-
tion of 2SAT to the constraint satisfaction problem (CSP). In constraint satis-
faction, domains are of arbitrary finite size, whereas in SAT they are boolean.

If Rij is a binary relation on variables 〈Xi, Xj〉, then we say that u ∈ di

is compatible with v ∈ dj iff 〈u, v〉 ∈ Rij . Recall that πiRij represents the
projection of the binary relation Rij onto variable Xi.

Definition 9.1 A binary constraint 〈〈Xi, Xj〉, Rij〉 is 0/1/all (ZOA) if each
u ∈ di is compatible with 0,1 or all the elements of πjRij and each v ∈ dj is
compatible with 0,1 or all the elements of πiRij.

The ZOA tractable class of constraints was first discovered simultaneously
by Kirousis [91] and Cooper et al. [46]. There is an alternative characterization
of ZOA constraints based on the notion of component-wise closure operation,
called polymorphism, defined below.

Definition 9.2 [86] Given a relation R ⊆ Dr, the function f : Dt → D is a

217

218 CHAPTER 9. TRACTABILITY OF DRAWING INTERPRETATION

�

�

�

�

�

�
•
•
•
•

•
•
•
•

���������#########�
�

�
�

�
�

�
��

di dj

bijection

Xj = π(Xi)

�

�

�

�

�

�
•
•
•
•

•
•
•
•

���������

#########

���������

���������

#########
���������

di dj

a

b

double fan-out
(Xi = a) ∨ (Xj = b)

Figure 9.1: The two types of binary ZOA constraints: each oval represents a
domain, each bullet a domain value and each line a compatible pair of values
(i.e. an element of the constraint relation).

polymorphism of R if ∀〈x11, . . . , x1r〉, . . . , 〈xt1, . . . , xtr〉 ∈ R,

〈f(x11, . . . , xt1), . . . , f(x1r, . . . , xtr)〉 ∈ R.

Theorem 9.3 [86] A binary relation Rij is ZOA iff it has the polymorphism
Mjty, where

Mjty(x, y, z) =
{
y if y = z,
x otherwise.

If the multiset {x, y, z} contains a majority element, i.e. the same value
which occurs at least twice, then the function Mjty(x, y, z) returns this element.
Any function which satisfies this property is known as a majority function.

Theorem 9.4 [85] If the r-ary relation R is closed under a majority function,
then R is decomposable into its binary projections, i.e.

R = �1≤i≤j≤n Rij .

To characterize ZOA relations we therefore only need to consider unary and
binary relations. A unary relation is simply a subset A of the domain. It is
easily verified that all unary constraints (i.e. Xi ∈ A) are ZOA. It was shown
in [46] that binary ZOA constraints (which are not decomposable into unary
constraints) have one of only two possible forms (illustrated in Figure 9.1):

• Xj = π(Xi), where π is a bijection;

• (Xi = a) ∨ (Xj = b) (a double fan-out constraint).

Theorem 9.5 Let CSP(ΓZOA) be the set of instances P of the CSP such that
all of the constraint relations of P are ZOA. Then CSP(ΓZOA) can be solved in
polynomial time.

9.1. TRACTABLE CONSTRAINT CLASSES 219

Proof: We give a polynomial-time algorithm to solve all P ∈ CSP(ΓZOA).
First of all we eliminate all bijection constraints by merging variables Xi, Xj if
they are linked by such a constraint. The remaining constraints are either double
fan-outs or unary constraints. This CSP P can then be solved by reduction to
2SAT, for which there is a polynomial-time algorithm [114]. In the instance IP
of 2SAT, there is a boolean variable Vi,c for each proposition of the form Xi ≤ c
(c ∈ di). Without loss of generality, suppose that ∀i di = {1, . . . , d}. In IP ,
there are three types of clauses:

1. Clauses to code the fact that Xi ∈ di = {1, . . . , d}:
Xi ≤ d and (∀c ∈ di) Xi ≤ c⇒ Xi ≤ c+ 1;

2. Clauses to code each double fan-out (Xi = a) ∨ (Xj = b):
Xi ≤ a− 1 ⇒ Xj ≤ b, Xi ≤ a− 1⇒ ¬(Xj ≤ b− 1),
¬(Xi ≤ a)⇒ Xj ≤ b, ¬(Xi ≤ a)⇒ ¬(Xj ≤ b− 1);

3. Clauses to code each unary constraint Xi ∈ A:
(∀c ∈ di −A) Xi ≤ c⇒ Xi ≤ c− 1.

9.1.2 Max-Closed Constraints

In this section, we suppose that each domain has a total ordering. We introduce
a tractable class of constraints which can be seen as a generalization of Horn
clauses to domains of arbitrary finite size.

Definition 9.6 [84] A relation R is max-closed if it has the polymorphism max,
i.e.

(x1, . . . , xr), (y1, . . . , yr) ∈ R =⇒ (max{x1, y1}, . . . ,max{xr, yr}) ∈ R.

The following lemma follows by a simple inductive proof from the above
definition.

Lemma 9.7 Let R be a max-closed relation. If x1, x2, . . . , xt ∈ R, where
xk = (xk

1 , . . . , x
k
r), then

(max{xk
1 : k = 1, . . . , t}, . . . ,max{xk

r : k = 1, . . . , t}) ∈ R.

Example 9.8 Examples of max-closed constraints:
Unary: Xi ∈ A (all unary constraints are max-closed);
Arithmetical: Xi = Xj + c, Xi ≥ Xj + c, Xi +Xj ≥ Xk + c, . . . [84];
Logical: Horn clauses (with the order false > true) [84].

Examples of constraints which are not max-closed:
Arithmetical: Xi �= Xj , Xi +Xj ≤ Xk + c, Xi +Xj = c, . . .;
Logical: Xi ∨Xj (with the order false > true).
�

220 CHAPTER 9. TRACTABILITY OF DRAWING INTERPRETATION

Theorem 9.9 Let CSP(Γmax) be the set of instances P of the CSP such that
all of the constraint relations of P are max-closed relations of order no greater
than k, for some constant k. Then CSP(Γmax) can be solved in polynomial time.

Proof: We can establish generalized arc consistency in polynomial time since
the order of the constraints is bounded by a constant. Indeed, the algorithm
AC2001 [10] is easily adapted so that it establishes generalized arc consistency in
O(cdk) time, where c is the number of constraints and d the maximum domain
size. Establishing generalized arc consistency cannot destroy the max-closed
property of constraints in P since it only updates domains and all unary con-
straints are max-closed. Let di be the domain of variable Xi (i = 1, . . . , n) after
establishing generalized arc consistency. Clearly, if di = ∅ for some i, then P has
no solution. Otherwise, let ai = max(di). Generalized arc consistency implies
that, for each constraint 〈S,RS〉,

∀Xi ∈ S ∃xi = (xi
1, . . . , x

i
s) ∈ RS such that xi[Xi] = ai.

By Lemma 9.7, (a1, . . . , an)[S] ∈ RS . Therefore, (a1, . . . , an) is a solution
to P .

9.1.3 Characterization of Tractable Boolean Constraints

We use the notation CSP(Γ) to represent the set of instances P of the constraint
satisfaction problem such that all constraint relations in P belong to Γ. P is
the set of decision problems which can be solved in polynomial time.

Definition 9.10 A constraint class Γ is tractable if CSP(Γ) ∈ P.

If c is a domain element, we can consider c a constant function. A set of
constraints which is closed under a constant polymorphism c (known as the
set of c-closed constraints) can trivially be solved by assigning the value c to
each variable. Horn clauses are disjunctions of literals in which at most one of
these literals is a non-negated variable (X1 ∨ ¬X2 ∨ ¬X3 and X1 are just two
examples). Anti-Horn clauses are disjunctions involving at most one negated
variable. A constraint relation R is affine if R is the set of solutions to a set of
linear equations (for example, R = {〈x1, x2, x3, x4〉 ∈ {0, 1}4: x1 + x2 + x3 = 0
mod 2 ∧ x3 = x4}).

Theorem 9.11 (Schaefer [138]) The only tractable classes of constraints over
boolean domains are subsets of one of the following

• The set of 0-closed constraints,

• The set of 1-closed constraints,

• The set of 2SAT clauses,

9.1. TRACTABLE CONSTRAINT CLASSES 221

• The set of Horn clauses,

• The set of anti-Horn clauses,

• The set of affine constraints.

Although no equivalent theorem has as yet been proved for non-boolean do-
mains, considerable progress has nevertheless been made. For example, it is
known that the presence of a polymorphism is a necessary condition for a class
of constraints to be tractable over domains of arbitrary finite size [83]. Further-
more, Bulatov has made a conjecture concerning an exact characterization of
tractable classes over such domains and has proved the validity of the conjecture
for size-3 domains [16]. An excellent survey of this field can be found in [25].

9.1.4 Characterization of Tractable Boolean Valued
Constraints

VSAT is a generalization of SAT which allows the user to express preferences
between solutions. It is simply the valued constraint satisfaction problem (see
Definition 8.16) over boolean domains and over the valuation structure R+ =
{z ∈ R : z ≥ 0} ∪ {∞} (i.e. costs are either non-negative real numbers or
infinite). The version of VSAT given below is a decision problem. In the opti-
mization version of VSAT, the aim is to find a solution of minimal total cost.

VSAT

Instance: n boolean variables X1, . . . , Xn, a set of valued constraints 〈cSi , Si〉
(i ∈ {1, . . . ,m}), where for each i, Si ⊆ {X1, . . . , Xn} and cSi : {0, 1}|Si| −→
R+ is a cost function, together with an integer k.
Question: Does there exist an assignment t to the variables X1, . . . , Xn such
that

m∑

i=1

cSi(t[Si]) ≤ k

We can observe that SAT is the special case of VSAT in which the cost func-
tions only take on values in {0,∞}. In what follows, we identify a propositional
formula F (such as X1 ∨ ¬X2) with the cost function which returns 0 if F is
satisfied and ∞ otherwise.

Example 9.12 We can encode the search for a minimum cut in a weighted
directed graph G as a VSAT instance P with a variable for each node of G and
a valued constraint 〈〈i, j〉, χwij 〉 for each directed edge 〈i, j〉 of weight wij in G,
where

χw(x, y) =
{
w if (x, y) = (0, 1),
0 otherwise.

222 CHAPTER 9. TRACTABILITY OF DRAWING INTERPRETATION

If we impose unary constraints on the source and target nodes to ensure that
they take the values {0} and {1}, respectively, then a minimum cut in G cor-
responds to the set of directed edges 〈i, j〉 whose corresponding variables are
assigned (0, 1) in a solution to P. �

Definition 9.13 ([24]) A list of functions, 〈f1, . . . , fm〉, where each fi is a
function from Dm to D, is a multimorphism of a cost function φ : Dr → R+ if,
for all 〈a11, . . . , a1r〉, . . ., 〈am1, . . . , amr〉 ∈ Dr, we have

m∑

i=1

φ(fi(a11, . . . , am1), . . . , fi(a1r, . . . , amr)) ≤
m∑

i=1

φ(ai1, . . . , air). (9.1)

Note that if 〈f1, . . . , fm〉 is a multimorphism of a cost function φ, then the
average cost of a set of m assignments is lowered by applying the functions
f1, . . . , fm co-ordinatewise. A trivial example of a multimorphism is 〈c〉, where
c is a constant; if all cost functions in an instance of VSAT have the multi-
morphism 〈c〉, then an optimal solution can be obtained by assigning c to each
variable.

As another trivial example of a multimorphism, define two functions Mjty,
Mnty:{0, 1}3 → {0, 1} as follows: ∀x, y ∈ {0, 1}, Mjty(x, x, y) = Mjty(x, y, x) =
Mjty(y, x, x) = x and Mnty(x, x, y) = Mnty(x, y, x) = Mnty(y, x, x) = y. If
exactly two out of their three arguments are equal, then Mnty returns the mi-
nority element and Mjty returns the majority element. In [24] it was shown
that, over boolean domains, the only cost functions having the multimorphism
〈Mjty,Mjty,Mnty〉 are the propositional formulae Xi = Xj and Xi �= Xj to-
gether with all unary cost functions (i.e. functions with a single argument).
There is a simple algorithm to solve an instance of VSAT with only these types
of valued constraints: firstly eliminate all propositional formulae by merging
variables (which involves permuting domain elements in the case of Xi �= Xj

constraints); if no contradiction is discovered during this stage, then for each
variable Xi, simply assign to Xi the value which has the least cost according to
the unary cost function on Xi.

A non-trivial class of tractable valued constraints is the class of submodular
cost functions.

Definition 9.14 A cost function is submodular if it has the multimorphism
〈min,max〉.

Submodular function minimization (SFM) [67, 159] is a tractable discrete
optimization problem which has applications in such diverse areas as statistical
physics [6] and the design of electrical networks [121]. Well-known examples of
submodular functions are the cut function of a graph [52] (Example 9.12) or of
a hypergraph [68], and the rank function of a matroid.

The ellipsoid algorithm provides a polynomial-time algorithm for SFM in
theory, but is not efficient in practice [71]. Recently, several more efficient

9.1. TRACTABLE CONSTRAINT CLASSES 223

polynomial-time algorithms have been published to solve SFM [81, 148, 79, 80,
123]. The fact that these algorithms can be applied to minimize a submodular
function defined on a distributive lattice [79] (also known as a ring family [148])
has been used to show that they can be applied to submodular functions which
may take on both finite and infinite values over totally-ordered finite domains
of arbitrary size [24]. The complexity of the fastest known algorithm for SFM
is O(n5γ+n6) where n is the number of variables and γ is the time to calculate
the objective function [123]. Nevertheless, for certain special cases of SFM,
more efficient algorithms exist. For example, Minimum Weighted Cut (see
Example 9.12) is a special case of SFM that can be solved in cubic time [69]. The
minimization of the sum of binary submodular cost functions over domains of
arbitrary finite size [23] can be seen as a generalization of Minimum Weighted
Cut.

A VCSP is permuted-submodular if its cost functions can be made sub-
modular by applying possibly different permutations to each variable domain.
Schlesinger [141] showed that given a permuted-submodular VCSP with finite
costs, domain permutations which render it submodular can be found in polyno-
mial time by reduction to 2SAT. It has also recently been shown that submod-
ular or permuted-submodular VCSP can also be solved directly by establishing
OSAC [44] or VAC [49].

The importance of submodularity is emphasized by the following theorem
which characterizes all tractable classes of VSAT constraints.

Theorem 9.15 [24]: The only tractable classes of valued constraints over boolean
domains are subsets of one of the following:

• The set of cost functions with the 〈0〉 multimorphism;

• The set of cost functions with the 〈1〉 multimorphism;

• The set of cost functions with the 〈Mjty,Mjty,Mnty〉 multimorphism;

• The set of 2SAT clauses;

• The set of affine constraints;

• The set of cost functions with the 〈min,min〉 multimorphism, which are
the set of Horn clauses together with monotone cost functions;

• The set of cost functions with the 〈max,max〉 multimorphism, which are
the set of anti-Horn clauses together with antitone cost functions;

• The set of cost functions with the 〈min,max〉 multimorphism, i.e. the set
of submodular functions.

An interesting recent theoretical development is the merging of the last three
classes in the list in Theorem 9.15, in the case of non-boolean domains [22].

224 CHAPTER 9. TRACTABILITY OF DRAWING INTERPRETATION

Definition 9.16 A tournament operation is a binary operation f : D2 → D
with the following properties:

• f is conservative: f(x, y) ∈ {x, y}, for all x, y ∈ D.

• f is commutative: f(x, y) = f(y, x), for all x, y ∈ D.

A tournament pair is a pair 〈f, g〉, where f and g are both tournament opera-
tions.

Both max and min are tournament operations, and 〈min,min〉, 〈max,max〉,
〈min,max〉 are all tournament pairs. It was shown in [22] that over domains of
any finite size, a set of cost functions having any tournament pair 〈f, g〉 as a
multimorphism is tractable.

9.2 Complexity of Line Drawing Interpretation

A fundamental result on the complexity of line drawing interpretation was
proved by Kirousis and Papadimitriou [92]: determining whether a line drawing
of a polyhedral scene has a legal labelling according to the Huffman–Clowes cat-
alogue (of projections of trihedral vertices) is NP-complete. They also proved
that determining whether a line drawing is realizable as the projection of a
polyhedral scene involving only trihedral vertices is NP-complete. Realizability
is a stronger condition than labelability since some legally labelled drawings are
not realizable (such as the Penrose triangle illustrated in Figure 2.4 or Escher’s
‘Belvedere’ illustrated in Figure 2.7).

Surprisingly, when all object surfaces are curved and there are no linear
features such as straight lines, collinearity or planarity, then these two problems
become solvable in polynomial time. As we show below, this follows from the
fact that the labelling constraints are max-closed.

Since all lines are curved, label transitions can occur between occluding
and convex labels on any line in a drawing [34]. This means that the difference
between the labels +,→ and← cannot be propagated along a line. We introduce
a new label δ to represent any of the set of labels {+,→,←}. The same convex
edge, when viewed from different viewpoints, can project into a line with any
one of these three different labels. The label δ gives the essential information
about the structure of the edge (it is convex) without specifying the position of
the viewpoint in relation to the two surfaces meeting at the edge.

In Figure 9.2 we give the simplified catalogue of labelled junctions for objects
composed of C3 surfaces meeting non-tangentially at trihedral vertices, in which
+, → and ← labels have been replaced by δ. For compactness of presentation,
we do not show the reflected versions of terminal, curvature-L and 3-tangent
junctions even though they are an essential part of the catalogue. An important
point is that C junctions (also known as phantom junctions or virtual junctions)
no longer appear in the catalogue, since no label transitions can occur within the
reduced label set {⇐,⇒, δ,−}. Thus the labelling problem consists in assigning
a unique label to each line.

9.2. COMPLEXITY OF LINE DRAWING INTERPRETATION 225

Terminal 1 l1 ∈ {⇒}

L
�

�
�

�
�

�1 2 (l1, l2) ∈ {δδ,−δ, δ−}

Curvature-L
•1 2 (l1, l2) ∈ {⇐ δ,⇐−, δ ⇒,− ⇒}

3-tangent 1
2 3 (l1, l2, l3) ∈ {⇒ δδ}

W �
��

�
��

,
,

1
2

3 (l1, l2, l3) ∈ {δδδ,−δ−, δ − δ}

Y ��
��

1 2

3
(l1, l2, l3) ∈ {δδδ,−−−, δδ−,−δδ, δ − δ}

T �
�

1 2

3
(l1, l2, l3) ∈ {δδ?,⇐⇐?,−δδ, δ − δ}

Figure 9.2: Catalogue of junction labellings for objects with C3 surfaces meeting
non-tangentially at trihedral vertices. For i ∈ {1, 2, 3}, li is the label of line i.
A question mark represents any label.

226 CHAPTER 9. TRACTABILITY OF DRAWING INTERPRETATION

Theorem 9.17 [36]. Given a drawing of curved objects, composed of n lines,
we can produce a legal global labelling, according to the curved-object trihedral
catalogue (Figure 9.2), if it exists, or determine that no such labelling exists, in
O(n) time.

Proof: We prove the theorem by showing that it is possible to express the line
drawing labelling problem as a CSP with max-closed constraints.

To distinguish between the two labels ⇐ and ⇒, we must assign a direction
to each line in the drawing. The direction of each line can be arbitrary, so we
choose them to be consistent for all lines in the same cycle or chain of curvature-L
junctions, for example, clockwise for all lines in the same cycle. The result is
that all curvature-L junctions J have one line entering and one line leaving J .
Similarly, at each T junction J , we choose the directions of the two lines forming
the bar of the T to be identical, so that one line enters and one line leaves J .

Consider a line drawing labelling problem with constraints derived from the
catalogue of Figure 9.2. Due to the arbitrary choice of the directions assigned
to the majority of lines in the drawing, the constraints which can occur in
the labelling problem are those shown in Figure 9.2 with the direction of any
number of lines reversed. Reversing the direction of a line means interchanging
the labels ⇒ and ⇐. The exceptions are curvature-L junctions and the bars
of T junctions which, by our choice of directions, always have one line entering
and one line leaving. The possible constraints are therefore:

{⇒} or {⇐} for terminal junctions
{δδ,−δ, δ−} for L junctions
{⇐ δ,⇐ −, δ ⇒,− ⇒} or {⇒ δ,⇒ −, δ ⇐,− ⇐} for curvature-L junctions
{⇒ δδ} or {⇐ δδ} for 3-tangent junctions
{δδδ,−δ−, δ− δ} for W junctions
{δδδ,−−−, δδ−,−δδ, δ− δ} for Y junctions
{δδδ, δδ−, δδ⇒, δδ ⇐,⇐⇐ δ,⇐⇐ −,⇐⇐⇒,⇐⇐⇐,−δδ, δ − δ}

or {δδδ, δδ−, δδ ⇒, δδ ⇐,⇒⇒ δ,⇒⇒ −,⇒⇒⇒,⇒⇒⇐,−δδ, δ− δ}
for T junctions

We define the function max : L × L → L, where L is the reduced label set
of line labels, according to the ordering:

‘⇒ ’ < ‘− ’ < ‘δ’ < ‘⇐ ’.

It is easy to verify that all the constraint relations given above are max-closed
under this ordering. For example, applying the function max pointwise to the
two legal labellings δδ− and −δδ for a Y junction produces δδδ, which is indeed
a legal labelling for a Y junction.

As was shown in the proof of Theorem 9.9, a CSP with max-closed con-
straints can be solved in O(cdk) time by establishing generalized arc consistency,
where c is the number of constraints, d the maximum domain size and k the
maximum number of variables in a constraint. A drawing composed of n lines
has O(n) junctions, thus c = O(n). The domain size is a constant d = 4, as is

9.2. COMPLEXITY OF LINE DRAWING INTERPRETATION 227

the maximum number of variables in a constraint k = 3. Thus the CSP can be
solved in linear time.

The outer-boundary constraint says that the outer boundary of a drawing
is an occluding contour, consisting of → and ⇒ labels. This is equivalent to
imposing a unary constraint on all lines on the outer boundary of the drawing.
Since all unary constraints are also max-closed, Theorem 9.17 remains valid
when we apply the outer-boundary constraint.

Theorem 9.17 is robust to changes in the assumptions we make about ob-
ject shape. For example, generalizing the catalogue of Figure 9.2 to include
projections of apices of cones, to include projections of non-trihedral vertices
or discontinuities of surface curvature produces another catalogue whose con-
straints are again max-closed [36]. The interpretation of line drawings of objects
with possibly tangential edges and surfaces has also been shown to be solvable
in linear time [34]. A similar result holds for pottery world objects [56].

A catalogue of junction labellings only provides a necessary condition which
must be satisfied by the global labelling of a drawing: each junction must have a
labelling found in the catalogue. In the case of polyhedral scenes, labelability is
not a sufficient condition for realizability. However, in the case of objects with
only curved C3 surfaces, we have the freedom to choose arbitrary C3 surfaces.
In was shown in [36] that, in this case, any legally labelled drawing is realizable.

If lines in a drawing represent differences in brightness or colour between
adjacent regions of an image, then no line should be present between two ad-
jacent regions of identical brightness and colour. This phenomenon is known
as contrast failure and is very common when line drawings are derived from
real images. Contrast failure is inevitable between adjacent regions which are
projections of parallel surfaces of identical surface characteristics subject to the
same illumination. When contrast failure can occur between parallel surfaces,
labelling a line drawing of objects with curved or planar surfaces is also solvable
in linear time [38]. This follows from a reduction to 2SAT for which there is a
linear-time algorithm [114].

Another problem which can be solved in linear time by reduction to 2SAT
is determining the existence of a legal labelling of a drawing of a polyhedral
scene in which objects have trihedral vertices, provided we are given (or can
determine) the vanishing points of all lines meeting at Y and W junctions in
the drawing [127]. This result generalizes to the case of curved objects when
we are given the vanishing points of all line ends [36]. Unfortunately, if we can
only determine the vanishing points of some, but not all, lines, then the problem
becomes NP-complete, as we prove below.

Theorem 9.18 [36] Labeling a line drawing of objects with C3 surfaces when
some of the vanishing points to line ends are known is NP-complete.

Proof: The problem is clearly in NP since the validity of a labelling can be
checked in polynomial time. To complete the proof it is sufficient to produce a
polynomial transformation from a known NP-complete problem.

228 CHAPTER 9. TRACTABILITY OF DRAWING INTERPRETATION

(a)

x

y

z

(b)
t

r s

(c)

u

v

w

Figure 9.3: Constructions for (a) x = y = z, (b) r = ¬s, (c) u ∨ v ∨ w.

Lichtenstein [102] proved the NP-completeness of PLANAR 3SAT, a version
of 3SAT in which the following bipartite graph G is planar: G has a vertex for
each variable v, a vertex for each disjunction D and an edge for each pair (v,D)
such that v or ¬v is one of the three literals in D. In order to exhibit a poly-
nomial reduction from PLANAR 3SAT to the line drawing labelling problem,
we need to specify the coding of variables, show how to generate many copies
of the same variable, give a negation construction and give a construction for
u ∨ v ∨ w.

We code true as ‘δ’ and false as ‘−’. Given the vanishing points of the three
lines that meet at a Y junction J , we can classify J as a Y(+) or a Y(−) junction
[127]. The set of legal labellings of a Y(−) junction is {− −−, δδ−, δ − δ,−δδ}
(which is no longer max-closed due to the fact that it does not contain δδδ).
In Figure 9.3, all Y junctions are Y(−) junctions, but all W junctions are ac-
tual W junctions (and not W(+) or W(−) junctions). Figure 9.3(a) shows a
construction to generate two copies y, z of the variable x. There are only two
legal labellings of this line drawing: in one x = y = z =‘δ’ and in the other
x = y = z =‘−’. By chaining together N − 1 copies of this construction we can
generate N copies of the same variable x. Figure 9.3(b) is a negation construc-
tion (s = ¬r). Since t must take on the value ‘δ’, the only two legal assignments
are (r =‘−’, s =‘δ’) and (r =‘δ’, s =‘−’). Figure 9.3(c) is the construction for
the disjunction of three literals u, v, w. It can easily be verified that all assign-
ments of values to u, v, w are possible except u = v = w =‘−’. The construction
thus imposes the condition u ∨ v ∨ w.

9.2. COMPLEXITY OF LINE DRAWING INTERPRETATION 229

Most computational problems corresponding to the interpretation of line
drawings containing linear features (such as straight lines, parallel lines, planar
faces, collinearity) have turned out to be intractable. The following is a list of
problems that have been shown to be NP-complete:

• The labelling of line drawings of polyhedral scenes [92];

• The realizability of a line drawing as the projection of a polyhedral scene
[92];

• The labelling of line drawings of objects with only curved faces but for
which we are given the vanishing points of some tangents to line-ends at
junctions [36];

• The labelling of line drawings under orthographic projection which contain
some parallel lines [36];

• Determining the existence of a legal labelling without label transitions
in the labelling of a line drawing of curved objects [36]; minimizing the
number of label transitions is NP-hard [36];

• The realizability of a line drawing of curved objects which may contain
collinear line ends or points [36];

• The labelling of a line drawing with shadows of a scene involving curved
objects (whether or not contrast failure can occur between parallel sur-
faces) [38];

• The labelling of a line drawing of an origami scene (even if we are given
the vanishing points of all lines) [125]; an origami scene may contain both
non-manifold objects, such as a sheet of paper, and solid objects with
trihedral vertices.

A tractable class of (valued) constraints must have some kind of structure
which a polynomial-time algorithm can exploit. From a theoretical point of
view, it is known that a tractable class of crisp constraints must have a poly-
morphism [83] and that a tractable class of valued constraints must have a
generalized form of multimorphism [21]. From a practical point of view, a dis-
parate set of constraint types, such as collinearity and junction labellings, are
unlikely to have a common structure (such as a polymorphism) which could be
exploited by a polynomial-time algorithm. Thus, emulating human vision by
integrating constraints arising from many diverse sources (junctions, vanishing
points, planarity, etc.) almost inevitably leads to a theoretically intractable
computational problem.

It is worth remembering that knowing that a problem P is NP-hard only
informs us about the worst-case performance of algorithms to solve P . The
completely contrived nature of the constructions in Figure 9.3 illustrate that
the set of drawings that are actually encountered in practice constitute a small
subset S of all possible drawings; a polynomial-time algorithm may exist for a
subset of drawings including most (or even all) of S.

Chapter 10

3D Reconstruction of
Ambiguous Pictures

10.1 Reconstruction of Frontal Geometry

It is well known that most drawings are ambiguous, if only in the size of the
object depicted. However, more serious forms of ambiguity often arise, even in
drawings of simple polyhedral objects. For example, Figure 10.1 shows some
line drawings in which there is considerable ambiguity in the relative depths of
object vertices.

In order to determine the most likely 3D reconstruction of a drawing of
a polyhedral scene, several workers have used a local search technique (such
as hill climbing [111, 7], Brent’s method [103, 122], simulated annealing [30],
tabu search [1] or a genetic algorithm [160]) to optimize an objective function.
The arguments of the objective function are usually the Z-coordinates of object
vertices but may also include the parameters (p, q, r) of planes of object faces
z = px + qy + r. Each of the linear constraints given in Chapter 6 should
be applied, either as a strict constraint in order to reduce the number of free
variables over which to search or in the form of a least-squares-error term to be
minimized.

The choice of objective function is obviously critical. Marill’s MSDA

####

�
�

���
�
�

�

�
�

�
� �

�

�
�

 		

	

���
�

�
�

��/////
���
�
�####

�
�
��

�
�
���

�
�

�

Figure 10.1: Examples of ambiguous pictures.

231

232 CHAPTER 10. 3D RECONSTRUCTION OF AMBIGUOUS PICTURES

criterion prefers the interpretation with the minimum standard deviation of
angles (SDA) [111]: given a 3D reconstruction, for each pair of edges which
meet at a vertex, we can calculate the 3D angle between these two edges. Min-
imizing SDA, the standard deviation of the resulting set of angles {θ1, . . . , θk},
is a heuristic which has been used by many workers since it naturally tends to
“inflate” the scene, thus avoiding the trivial interpretation of the drawing as a
completely flat scene. Linear constraints alone, based on coplanarity, parallel
lines or collinearity, do not inflate since they are all satisfied by a completely
flat scene.

Other criteria which tend to inflate objects include a preference for right
angles (whether between pairs of edges, between pairs of faces or between edges
and faces [103]) or for horizontal or vertical edges or faces [162]. To emphasize
the fact that right angles are common features but that we have no preference
between other angles, we can add a penalty function f(θ) which is constant
except in the vicinity of θ = π

2 [162]. Note that discrete labelling schemes which
identify cubic corners (Chapter 4) or orthogonal edges (Chapter 5) naturally
inflate scenes without the use of a compliance function favouring orthogonality.

When constructing a compliance function expressing a preference for hori-
zontalness or verticality, it is important to make the distinction between view-
point coordinates (X,Y, Z) and world coordinates (u, v, w). We usually draw
objects as if they were placed on a horizontal plane and viewed from above at
an angle α ≈ π

6 . This implies the following transformation between viewpoint
and world coordinates, assuming right-hand coordinate systems:

u = X,

v = Y cosα − Z sinα,
w = Z cosα + Y sinα.

Under orthographic projection, vertical lines project into vertical lines in the
picture plane but suffer from foreshortening.

Varley et al. [166, 169] and Company et al. [26] dismiss the importance
of SDA in favour of compliance functions based on planarity, parallel lines,
cubic corners, symmetry, etc. However, the objects depicted in Figure 10.1
demonstrate that certain objects contain none or few orthogonality features
and hence require some inflation-inducing compliance function such as SDA for
inflation to occur.

Unlike methods which estimate the depths of vertices while minimizing some
complex objective function, Liu et al. [106] estimate the free parameters of the
planar faces while minimizing a very simple objective function (SDA). The re-
sult is a much smaller search space, the number of free parameters typically
being an order of magnitude less than the number of vertices. Their experi-
ments demonstrate that the 3D reconstruction of a planar-faced object from a
wireframe projection is both more reliable and faster, even with a very simple
objective function. The superstrictness of the equations (where a small error in
the drawing would imply that there is no solution) is dealt with in an ad hoc
way by adding extra free parameters based on the singular value decomposition.

10.2. HIDDEN-PART RECONSTRUCTION 233

The choice of the most appropriate objective function for the 3D reconstruc-
tion of objects with some planar and some curved surfaces is at present an open
problem which will no doubt be the subject of research in the near future.

10.2 Hidden-Part Reconstruction

In this section, we consider line drawings in which hidden lines are not shown.
An important limitation of such drawings is that they only represent the frontal
geometry of the corresponding 3D scene. This begs the question as to whether it
is possible to automatically reconstruct hidden object parts. Human beings are
certainly capable of this. The drawings in Figures 3.23, 5.2 and 5.9 are quite
complex, but we can completely reconstruct, with little or no ambiguity, the
hidden parts of all objects depicted in these drawings. In a line drawing we have
very incomplete information about curved surfaces since they are only visible
in the drawing at edges (surface-normal discontinuity edges or extremal edges).
The reconstruction of visible curved surfaces could therefore be considered as a
special case of hidden-part reconstruction.

Consider a drawing of a 3D scene and its corresponding numerically labelled
wireframe projection W . Hidden scene-edges fall into two categories:

• Occluded edges which lie behind another object (or part of the same object)
and which have a numerical label m,n in W with m > 0 an even number;

• Invisible edges which face away from the viewpoint and which have a
numerical label m,n in W where m > 0 is an odd number.

Lines with numerical depth label m = 0 in W may still be missing due, for
example, to contrast failure if the drawing has been derived from an intensity
image [38]. The system of Ding and Young [57] reconstructs both hidden and
missing edges based on heuristic rules inspired by Gestalt principles including
symmetry, good shape, simplicity and closure. Their system is designed for
drawings of polyhedral objects with trihedral vertices and performs well on
objects with 3D symmetry. It is incomplete, in the sense that it can fail to
propose a 3D completion of a partially reconstructed object if none of its rules
can be triggered.

The system of Cao et al. [18] recovers hidden edges of polyhedral objects
with trihedral vertices and no through holes. By assuming that each hidden
vertex is connected to at least one visible vertex, they can bound the number
of hidden vertices. A complete search is then possible over all possible hid-
den structures (the graph of hidden vertices and edges). They select the most
plausible hidden structure by topological symmetry: hidden faces are mapped
injectively to visible faces having the same number of edges; they then prefer
the hidden structure with the minimum number of unmapped hidden faces, ties
being broken by a preference for a smaller number of hidden vertices. This
topological reconstruction is then followed by a hill-climbing algorithm (Leclerc
and Fischler’s continuation method [99]) to determine the 3D coordinates of

234 CHAPTER 10. 3D RECONSTRUCTION OF AMBIGUOUS PICTURES

(a)

�
�������

�����

�
�

�

�
�

�

-
-
--

///

�
�

�
�

������

(b)

�
�������

�����

�
�

�

�
�

�

-
-
--

///

�
�

�
�

������

(c)

�
�������

�����

�
�

�

�
�

�

-
-
--

///

�
�

�
�

������

Figure 10.2: The line drawing in (a) has many different possible hidden-part
reconstructions, two of which are shown in (b) and (c).

10.2. HIDDEN-PART RECONSTRUCTION 235

(a)

�
�������

�����

�
�

�

�
�

�

-
-
--

///

�
�

�

�����

-
-
--

�
��

///

(b)

�
�������

�����

�
�

�

�
�

�

-
-
--

///

�
�

�

�����

-
-
--

�
��

///

Figure 10.3: The line drawing in (a) has a hidden-part reconstruction, shown
in (b), which has six planes of symmetry.

hidden vertices and the depth of visible vertices. The objective function is a
weighted sum of ΣP 2

i /Ai, where Pi, Ai are the perimeter and the area of face i,
Marill’s SDA (standard deviation of angles between adjacent edges) [111], and
the sum of the squared distances of vertices from the planes of the faces in which
they should lie. The first two criteria encourage inflation and a certain form of
numerical symmetry, while the third criterion encourages planarity.

To illustrate the difficulty of hidden-part reconstruction, even in the simple
case of a single polyhedral object, consider the drawing in Figure 10.2(a). Most
people imagine the hidden part of the object to be as illustrated by the broken
lines in Figure 10.2(b). This is despite the fact that the hidden part illustrated
in Figure 10.2(c) is much simpler, in that it involves three fewer vertices, six
fewer edges, three fewer faces, and furthermore all its vertices are trihedral.
The explanation perhaps lies in the fact that the 3D shape in Figure 10.2(b) is
closer to a cube than the shape in Figure 10.2(c). Now consider what happens
if we shave off the nearest corner of the object, as shown in Figure 10.3(a).
Most people now imagine the hidden part of the object to be as illustrated in
Figure 10.3(b). This interpretation has six planes of symmetry, whereas com-
pleting the object as shown in Figure 10.2(b) or (c) would produce an object
with only three planes of symmetry. These examples demonstrate two things:
that Gestalt principles (such as symmetry, good shape and simplicity) are im-
portant but that assigning the appropriate importance to the different principles
when they are in conflict with each other is a challenging open problem.

Occlusion can segment an object into two or more visible parts. Tse [161]
argues that human volume completion is achieved through a combined ap-
proach using inter-relationships between reconstructed contours/surfaces, the
“mergeability” of unbounded reconstructed volumes, world knowledge and the

236 CHAPTER 10. 3D RECONSTRUCTION OF AMBIGUOUS PICTURES

Figure 10.4: The ‘sea monster’ (adapted from [161]).

extrapolation of patterns into hidden parts of the scene. Breckon and Fisher [14]
discuss the implications of applying these principles in diverse computer vision
applications. A classic example of the importance of world knowledge is Tse’s
sea monster [161], illustrated in Figure 10.4. We see this as a single object even
though there is no visible occluding object and no obvious continuity between
the three visible parts of the object.

The extreme case of use of world knowledge is when we have 3D models of all
objects which may occur in the scene. Many diverse techniques have been used
to recognize possibly partially-occluded objects, but all of them detect local fea-
tures which are invariant under the set of rigid transformations that the object
may undergo. Examples of such features are vertices, straight edge segments,
zeros of curvature and discontinuities of curvature of 3D edges. (See Chapter 9
of [31] for an extensive review of techniques for partially-occluded object recog-
nition.) The computational complexity of the interpretation of cluttered scenes
containing only known objects has been studied in detail [35]: the constraint
that objects must not intersect in 3D space is sufficient to render the problem of
finding a single legal interpretation NP-hard (except in the case of orthographic
projection of scenes in which objects do not form mutually occluding cycles).

Bibliography

[1] Aarts, E. and Lenstra, J., Local Search in Combinatorial Optimization,
Wiley, New York (1997).

[2] Ablameyko, S. and Pridmore, T., Machine Interpretation of Line Draw-
ing Images: Technical Drawings, Maps and Diagrams, Springer (2000).

[3] Affane, M.-S. and Bennaceur, H., A weighted arc consistency technique
for MAX-CSP, Proc. ECAI’98, Brighton (1998) pp. 209–213.

[4] Agarwal, S.C. and Waggenspack, W.N. Jr., Decomposition method for
extracting face topologies from wireframe models, Comput.-Aided Des.,
24(3) (1992) pp. 123–140.

[5] Alevizos, P.D., A linear algorithm for labeling planar projections of poly-
hedra, Proc. IEEE/RSJ International Workshop on Intelligent Robots
and Systems IROS’91, Osaka (1991) pp. 595–601.

[6] Anglès d’Auriac, J-Ch., Igloi, F., Preismann, M. and Sebö, A., Optimal
cooperation and submodularity for computing Potts’ partition functions
with a large number of statistics, J. Physics A Math. Gen. 35 (2002),
pp. 6973–6983.

[7] Baird, L. and Wang, P., 3D object perception using gradient descent, J.
Math. Imag. and Vision 5(2) (1995) pp. 111–117.

[8] Bennaceur, H. and Osmani, A., Computing lower bounds for MAX-CSP
problems, Proc. 16th Int. Conf. on Industrial and Engineering Appli-
cations of Artificial Intelligence and Expert Systems (IEA/AIE-2003),
P.W. Chung, C.J. Hinde and M. Ali (eds.), LNAI 2718, Springer (2003)
pp. 614–624.

[9] Bessière, C., Arc-consistency in dynamic constraint satisfaction prob-
lems, Proc. AAAI’91, Anaheim, CA, USA (1991) pp. 221–226.

[10] Bessière, C. and Régin, J.-C., Refining the basic constraint propagation
algorithm, Proc. IJCAI’01, Seattle (2001) pp. 309–315.

237

238 BIBLIOGRAPHY

[11] Bistarelli, S., Fargier, H., Montanari, U., Rossi, F., Schiex, T. and Ver-
faillie, G., Semiring-based CSPs and valued CSPs: Frameworks, proper-
ties and comparison, Constraints 4, (1999) pp. 199–240.

[12] Bleux, J.-M. and Bouderlique, F. Dessin industriel, Nathan, Paris (1996).

[13] Boros, E. and Hammer, R.L., Pseudo-Boolean optimization, Discrete
Appl. Math. 123 (2002) pp. 155–225.

[14] Breckon, T.P. and Fisher, R.B., Amodal volume completion: 3D visual
completion, Comput. Vision Image Understand. 99 (2005) pp. 499–526.

[15] Brown, E. and Wang, P., 3D object recovery from 2D images: a new
approach, SPIE Proc. Robot. Comput. Vision 2904 (1996) pp. 138–145.

[16] Bulatov, A.A., A dichotomy theorem for constraint satisfaction problems
on a three-element set, J. ACM 53(1) (2006) pp. 66–120.

[17] Burns, K.J., Mental models of line drawings, Perception 30 (2002)
pp. 1249–1261.

[18] Cao, L., Liu, J. and Tang, X., What the back of the object looks like:
3D reconstruction from line drawings without hidden lines, IEEE Trans.
Pattern Anal. Machine Intell. 30(3) (2007) pp. 507–517.

[19] Chvátal, V. Linear Programming, Freeman, New York, 1983.

[20] Clowes, M.B., On seeing things, Artif. Intell. 2 (1) (1971) pp. 79–116.

[21] Cohen, D., Cooper, M.C. and Jeavons, P., An algebraic characterisation
of complexity for valued constraints, Proc. CP’06, LNCS 4204, Springer
(2006) pp. 107–121.

[22] Cohen, D., Cooper, M.C., Jeavons, P., Generalising submodularity and
Horn clauses: tractable optimization problems defined by tournament
pair multimorphisms, Theor. Comput. Sci. to appear (2008).

[23] Cohen, D., Cooper, M.C., Jeavons, P. and Krokhin, A., A maximal
tractable class of soft constraints, J. Artif. Intell. Res. 22 (2004) pp. 1–
22.

[24] Cohen, D., Cooper, M.C., Jeavons, P. and Krokhin, A. The complexity
of soft constraint satisfaction, Artif. Intell. 170 (11) (2006) pp. 983–1016.

[25] Cohen, D. and Jeavons, P., The Complexity of Constraint Languages
in Handbook of Constraint Programming, Rossi, F., van Beek, P. and
Walsh, T. (eds.) Elsevier Science, New York (2006) pp. 245–280.

[26] P. Company, M. Contero, J. Conesa and A. Piquer, An opimisation-based
reconstruction engine for 3D modelling by sketching, Comput. Graph. 28
(2004) pp. 955–979.

BIBLIOGRAPHY 239

[27] Company, P., Piquer, A., Contero, M. and Naya, F., A survey of geo-
metrical reconstruction as a core technology to sketch-based modelling,
Comput. Graph. 29 (2005) pp. 892–904.

[28] Condoor, S. Mechanical Design Modeling Using Pro/ENGINEERTM ,
McGraw-Hill, New York (2002).

[29] Conesa Pastor, J., Company Calleja, P., Gomis Marti, J.M., Initial mod-
elling strategies for geometrical reconstruction - optimisation-based ap-
proaches, Proc. 11th Int. Conf. on Design Tools and Methods in Indus-
trial Engineering (1999) pp. 161–171.

[30] Connoly, D., General purpose simulated annealing, J. Oper. Res. Soc.
43 (5) (1992) pp. 495–505.

[31] Cooper, M.C. Visual Occlusion and the Interpretation of Ambiguous Pic-
tures, Ellis Horwood, Chichester, U.K. (1992).

[32] Cooper, M.C., Interpretation of line drawings of complex objects, Image
Vision Comput. 11 (2) (1993) pp. 82–90.

[33] Cooper, M.C., Fundamental properties of neighbourhood substitution in
constraint satisfaction problems, Artif. Intell. 90 (1997) pp. 1–24.

[34] Cooper, M.C., Interpreting line drawings of curved objects with tangen-
tial edges and surfaces, Image Vision Comput. 15 (1997) pp. 263–276.

[35] Cooper, M.C., The tractability of segmentation and scene analysis, Int.
J. Comput. Vision 30(1) (1998) pp. 27–42.

[36] Cooper, M.C., Linear-time algorithms for testing the realisability of line
drawings of curved objects, Artif. Intell. 108 (1999) pp. 31–67.

[37] Cooper, M.C., Linear constraints for the interpretation of line drawings
of curved objects, Artif. Intell. 119 (2000) pp. 235–258.

[38] Cooper, M.C., The interpretation of line drawings with contrast failure
and shadows, Int. J. Comput. Vision 43 (2) (2001) pp. 75–97.

[39] Cooper, M.C., Reduction operations in fuzzy and valued constraint sat-
isfaction, Fuzzy Sets Syst. 134 (2003) pp. 311–342.

[40] Cooper, M.C., Cyclic consistency: a local reduction operation for binary
valued constraints, Artif. Intell. 155(1–2) (2004) pp. 69–92.

[41] Cooper, M.C., High-order consistency in valued constraint satisfaction,
Constraints 10 (2005) pp. 283–305.

[42] Cooper, M.C., Wireframe projections: physical realisablity of curved ob-
jects and unambiguous reconstruction of simple polyhedra, Int. J. Com-
put. Vision 64 (1) (2005) pp. 69–88.

240 BIBLIOGRAPHY

[43] Cooper, M.C., Constraints between distant lines in the labelling of line
drawings of polyhedral scenes, Int. J. of Computer Vision 73(2) (2007)
pp. 195–212.

[44] Cooper, M.C., Minimization of locally-defined submodular functions by
optimal soft arc consistency, Constraints, to appear (2008).

[45] Cooper, M.C., A rich discrete labeling scheme for line drawings of curved
objects, IEEE Trans. Pattern Anal. Machine Intell., to appear (2008).

[46] Cooper, M.C., Cohen, D.A. and Jeavons, P.G., Characterising tractable
constraints, Artif. Intell. 65 (1994) pp. 347–361.

[47] Cooper, M.C., Cussat-Blanc, S., de Roquemaurel, M. and Régnier, P.,
Soft arc consistency applied to optimal planning, Proc. CP’06, Nantes,
LNCS 4204, Springer (2006) pp. 680–684.

[48] Cooper, M.C., de Givry, S. and Schiex, T., Optimal soft arc consistency,
Proc. IJCAI’07, Hyderabad (2007) pp. 68–73.

[49] Cooper, M.C., de Givry, S., Sanchez, M., Schiex, T. and Zytnicki, M.,
Virtual arc consistency for valued CSP, to appear in Proc. AAAI-08,
Chicago (2008).

[50] Cooper, M.C. and Schiex, T., Arc consistency for soft constraints, Artif.
Intell. 154(1-2) (2004) pp. 199–227.

[51] Costa Sousa, M. and Prusinkiewicz, P., A few good lines: suggestive
drawing of 3D models, Comput. Graph. Forum 22(3) (2003) pp. 381–
390.

[52] Cunningham, W.H., Minimum cuts, modular functions, and matroid
polyhedra, Networks 15(2) (1985) pp. 205–215.

[53] de Givry S., Heras, F., Larrosa, J., Rollon, E. and Schiex, T.,
The SoftCSP and Max-SAT benchmarks and algorithm website,
http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/softcsp.

[54] de Givry S., Heras, F., Zytnicki, M. and Larrosa, J., Existential arc
consistency: getting closer to full arc consistency in weighted CSPs, Proc.
IJCAI-05, Edinburgh, Scotland (2005) pp. 84–89.

[55] Dechter, R. Constraint Processing, Morgan Kaufmann, San Mateo, CA
(2003).

[56] Dendris, N.D., Kalafatis, I.A. and Kirousis, L.M., An efficient paral-
lel algorithm for geometrically characterising drawings of a class of 3-D
objects, J. Math. Imag. Vision 4 (1994) pp. 375–387.

BIBLIOGRAPHY 241

[57] Ding, Y. and Young, T.Y., Complete shape from imperfect contour: a
rule-based approach, Comput. Vision Image Understand. 70(2) (1998)
pp. 197–211.

[58] Dowling, W. and Gallier, J., Linear-time algorithms for testing the satis-
fiability of propositional Horn formulae, J. Logic Programm. 1(3) (1984)
pp. 267–284.

[59] Draper, S.W., The use of gradient and dual space in line-drawing inter-
pretation, Artif. Intell. 17 (1981) pp. 461–508.

[60] Elber, G., Line illustrations ∈ computer graphics, Visual Comput. 11
(1995) pp. 290–296.

[61] Ernst, B., Adventures with Impossible Figures, Tarquin, Stradbroke, Nor-
folk (1986).

[62] Fargier, H. and Lang, J., Uncertainty in constraint satisfaction prob-
lems: a probabilistic approach, in Proc. ECSQARU, Springer, LNCS
747 (1993) pp. 97–104.

[63] Fargier, H., Lang, J. and Schiex, T., Selecting preferred solutions in
Fuzzy Constraint Satisfaction Problems, Proc. 1st European Congress
on Fuzzy and Intelligent Technologies, Aachen (1993) pp. 1128–1134.

[64] Faugeras, O., Three-Dimensional Computer Vision, MIT Press, Cam-
bridge, MA (1993).

[65] Feder, T. and Vardi, M.Y., The computational structure of monotone
monadic SNP and constraint satisfaction: a study through datalog and
group theory, SIAM J. Comput. 28(1), (1998) pp. 57–104.

[66] Freuder, E.C., Eliminating interchangeable values in constraint satisfac-
tion problems in Proc. AAAI-91, Anaheim, CA (1991) pp. 227-233.

[67] Fujishige, S., Submodular Functions and Optimisation, 2nd edn., Annals
of Discrete Mathematics 58, Elsevier, Amsterdam, 2005.

[68] Fujishige, S. and Patkar, S.B., Realization of set functions as cut func-
tions of graphs and hypergraphs, Discrete Math. 226 (2001) pp. 199–210.

[69] Goldberg, A. and Tarjan, R.E., A new approach to the maximum flow
problem, J. ACM 35 (1988) pp. 921–940.

[70] Grimstead, I.J. and Martin, R.R., Incremental line labelling for sketch
input of solid models, Comput. Graph. Forum 15(2) (1996) pp. 155–166.

[71] Grötschel, M., Lovász, L. and Schrijver, A., The ellipsoid method and
its consequences in combinatorial optimization, Combinatorica 1 (1981)
pp. 169–198; corrigendum: Combinatorica 4 (1984) pp. 291–295.

242 BIBLIOGRAPHY

[72] Hammer, P.L., Hansen, P. and Simeone, B., Roof duality, complementa-
tion and persistency in quadratic 0-1 optimization, Math. Programm. 28
(1984) pp. 121–155.

[73] Heyden, A., On the consistency of line-drawings, obtained by projections
of piecewise planar objects, J. Math. Imag. Vision 6 (1996) pp. 393–412.

[74] Horn, B.K.P., Robot Vision, MIT Press, Cambridge, MA (1986).

[75] Huffman, D.A., Impossible objects as nonsense sentences in Machine
Intelligence 6, Meltzer, B. and Michie, D. (eds.) Edinburgh University
Press (1971) pp. 295–323.

[76] Huffman, D.A., A duality concept for the analysis of polyhedral scenes, in
Machine Intelligence 8, Elcock E.W. and Michie, D. (eds.) Ellis Horwood,
Chichester (1977) pp. 475–492.

[77] Huffman, D.A., Realizable configurations of lines in pictures of polyhe-
dra, in Machine Intelligence 8, Elcock, E.W. and Michie, D. (eds.) Ellis
Horwood, Chichester (1977) pp. 493–509.

[78] Imai, H., On combinatorial structures of line drawings of polyhedra,
Discrete Appl. Math. 10 (1985) pp. 79–92.

[79] Iwata, S., A fully combinatorial algorithm for submodular function min-
imization, J. Combinator. Theory Ser. B 84(2) (2002) pp. 203–212.

[80] Iwata, S., A faster scaling algorithm for minimizing submodular func-
tions, SIAM J. Comput. 32(4) (2003) pp. 833-840.

[81] Iwata, S., Fleischer, L. and Fujishige, S., A combinatorial, strongly
polynomial-time algorithm for minimizing submodular functions, J.
ACM 48(4), (2001), pp. 761–777.

[82] Jain, P.K., Extraction of compound volumetric features from a three-
dimensional wire frame model, Proc. Institute of Mechanical Engineers
Part B J. Eng. Manufact. 213(6) (1999) pp. 597-613.

[83] Jeavons, P.G., On the algebraic structure of combinatorial problems,
Theor. Comput. Sci. 200 (1998) pp. 185–204.

[84] Jeavons, P. and Cooper, M.C., Tractable constraints on ordered domains,
Artif. Intell. 79 (1995) pp. 327–339.

[85] Jeavons, P., Cohen, D. and Cooper M.C., Constraints, consistency and
closure, Artif. Intell. 101 (1998) pp. 251–265.

[86] Jeavons, P.G., Cohen D.A. and Gyssens, M., Closure properties of con-
straints, J. ACM 44 (1997) pp. 527–548.

BIBLIOGRAPHY 243

[87] Kanade, T., Recovery of the three-dimensional shape of an object from
a single view, Artif. Intell. 17 (1981) pp. 409–460.

[88] Kanade, T., From a real chair to a negative chair, Artif. Intell. 59 (1993)
pp. 95–101.

[89] Kanatani, K., The constraints on images of rectangular polyhedra, IEEE
Trans. Pattern Anal. Machine Intell. 8(4) (1986) pp. 456–463.

[90] Kirousis, L.M., Effectively labeling planar projections of polyhedra,
IEEE Trans. Pattern Anal. Machine Intell. 12(2) (1990) pp. 123–130.

[91] Kirousis, L.M., Fast parallel constraint satisfaction, Artif. Intell. 64
(1993) pp. 147–160.

[92] Kirousis, L.M. and Papadimitriou, C.H., The complexity of recognizing
polyhedral scenes, J. Comput. Syst. Sci. 37 (1) (1988) pp. 14–38.

[93] Koenderink, J.J., Solid Shape, MIT Press, Cambridge, MA (1990).

[94] Koenderink, J.J. and van Doorn, A.J., The shape of smooth objects and
the way contours end, Perception 11 (1982) pp. 129–137.

[95] Kuo, M.H., A Systematic Approach Towards Reconstructing 3D Curved
Models from Multiple 2D Views in Graphics Recognition: Algorithms
and systems; 2nd International Workshop, GREC’97, Tombre, K. and
Chhabra. A.K. (eds.), LNCS 1389, Springer (1998) pp. 265–279.

[96] Larrosa, J., Node and arc consistency in weighted CSP, Proc. AAAI’02,
Edmonton, Alberta (2002), pp. 48–53.

[97] Larrosa, J. and Schiex, T., In the quest of the best form of local consis-
tency for Weighted CSP, Proc. IJCAI, Acapulco (2003), pp. 239–244.

[98] Larrosa, J. and Schiex, T., Solving weighted CSP by maintaining arc
consistency, Artif. Intell. 159 (2004) pp. 1–26.

[99] Leclerc, Y.G. and Fischler, M.A., An optimization-based approach to the
interpretation of single line drawings as 3D wire frames, Int. J. Comput.
Vision 9(2) (1992) pp. 113–136.

[100] Li, C.M., Manya, F. and Planes J., Exploiting unit propagation to com-
pute lower bounds in branch and bound Max-SAT solvers, Principles
and Practice of Constraint Programming – CP 2005, Sitges, Spain (2005)
LNCS 3709, pp. 403–414.

[101] Li, H., nD polyhedral scene reconstruction from single 2D line drawing
by local propagation, ADG 2004, Gainsville, FL, Hong, H. and Wang,
D. (eds.), LNCS 3763, Springer (2006) pp. 169–197.

244 BIBLIOGRAPHY

[102] Lichtenstein, D., Planar formulae and their uses, SIAM J. Comput. 11
(1982) pp. 329–343.

[103] Lipson, H. and Shpitalni, M., Optimisation-based reconstruction of a 3d
object from a single freehand line drawing, Comput.-Aided Des. 28 (8)
(1996) pp. 651–663.

[104] Lipson, H. and Shpitalni, M., Conceptual design and anlysis by sketching,
Artif. Intell. Eng. Des., Anal. Manuf. 14 (2000) pp. 391–401.

[105] Liu, J., Lee, Y.T., Cham, W.-K., Identifying faces in a 2D line draw-
ing representing a manifold object, IEEE Trans. Pattern Anal. Machine
Intell. 24 (12) (2002) pp. 1579–1593.

[106] Liu, J., Cao, L., Li, Z. and Tang, X., Plane-based optimization for 3D
object reconstruction from single line drawings, IEEE Trans. Pattern
Anal. Machine Intell. 30(2) (2008) pp. 315–327.

[107] Mackworth, A.K., Interpreting pictures of polyhedral scenes, Artif. In-
tell. 4 (1973) pp. 121–137.

[108] Mackworth, A.K., Consistency in networks of relations, Artif. Intell. 8
pp. 99–118.

[109] Malik, J., Interpreting line drawings of curved objects, Int. J. Comput.
Vision 1 (1987) pp. 73–103.

[110] Malik, J. and Maydan, D., Recovering three-dimensional shape from
a single image of curved objects, IEEE Trans. Pattern Anal. Machine
Intell. 11(6) (1989) pp. 555–566.

[111] Marill, T., Emulating the human interpretation of line drawings as three-
dimensional objects, Int. J. Comput. Vision 6 (2) (1991) pp. 147–161.

[112] Markowsky, G. and Wesley, M.A., Fleshing out wire frames, IBM J. Res.
Develop., 24(5) (1980) pp. 582–597.

[113] Marsolek, C.J. and Burgund, E.D., Initial storage of unfamiliar objects:
Examining memory stores with signal detection and analysis, Acta Psy-
chologia 119(1) (2005) pp. 81–106.

[114] Melhorn, K., Graph Algorithms and NP-Completeness, EACTS,
Springer, Berlin (1974).

[115] Meseguer, P., Rossi, F. and Schiex, T., Soft Constraints, in Handbook of
Constraint Programming, Rossi, F., van Beek, P. and Walsh, T. (eds.)
Elsevier, Amsterdam (2006) pp. 281–328.

[116] Mohr, R. and Masini, G., Good old discrete relaxation, Proc. 8th Euro-
pean Conference on Artificial Intelligence – ECAI’88, Munich, Kodratoff,
Y. (ed.) Pitman, London (1988) pp. 651–656.

BIBLIOGRAPHY 245

[117] Mitiche, A. and Habelrih, G., Interpretation of straight line correspon-
dences using angular relations, Pattern Recog. 22(3) (1989) pp. 299–308.

[118] Mortenson, M. Geometric Modelling, 2nd edn, Wiley, New York (1997).

[119] Nalwa, V.S., Line drawing interpretation: a mathematical framework,
Int. J. Comput. Vision 2(2) (1988) pp. 103–124.

[120] Nalwa, V.S., Line-drawing interpretation: bilateral symmetry, IEEE
Trans. Pattern Anal. Machine Intell. 11(10) (1989) pp. 1117–1120.

[121] Narayanan, H., Submodular Functions and Electrical Networks, North-
Holland, Amsterdam (1997).

[122] Oh, B. and Kim, C., Self-correctional 3D shape reconstruction from a
single freehand line drawing, ICCSA 2003, Montreal, Kumar, V. et al.
(eds.) LNCS 2669, Springer (2003) pp. 528–538.

[123] Orlin, J.B. A faster strongly polynomial time algorithm for submodular
function minimization, IPCO 2007, LNCS 4513, pp. 240–251.

[124] Ortiz, S. Jr., 3D search starts to take shape, Computer, August (2004)
pp. 24–26.

[125] Parodi, P., The complexity of understanding line drawings of origami
scenes, Int. J. Comput. Vision 18(2) (1996) pp. 139–170.

[126] Parodi, P., Lancewicki, R., Vijh, A. and Tsotsos, J.K., Empirically-
derived estimates of the complexity of labelling line drawings of poly-
hedral scenes, Artif. Intell. 105 (1-2) (1998) pp. 47–75.

[127] Parodi, P. and Torre, V., On the complexity of labelling perspective
projections of polyhedral scenes, Artif. Intell. 70 (1994) pp. 239–276.

[128] Penrose, L.S. and Penrose, R., Impossible objects: a special type of visual
illusion, Br. J. Psychol. 49 (1958) pp. 31–33.

[129] Penrose, R., On the cohomology of impossible figures, in The Visual
Mind: Art and Mathematics, Emmer, M. (ed.) Leonardo Books, MIT
Press, Cambridge, MA (1993) pp. 27–29.

[130] Perkins, D.N., Visual discrimination between rectangular and nonrectan-
gular parallelepipeds, Percept. Psychophys. 12 (5) (1972) pp. 396–400.

[131] Petitjean, S., The enumerative geometry of projective algebraic surfaces
and the complexity of aspect graphs, Int. J. Comput. Vision 19 (3) (1996)
pp. 261–287.

[132] Piquer Vicent, A., Company Calleja, P. and Martin, R.R., Skewed mirror
symmetry in the 3D reconstruction of polyhedral models, J. WSCG 11
(3) (2003) pp. 504–511.

246 BIBLIOGRAPHY

[133] Régin, J., A filtering algorithm for constraints of difference in CSPs,
Proc. 12th Natl. Conf. on Artificial Intelligence (AAAI-94), AAAI Press,
Seattle (1994) pp. 362–367.

[134] Rodgers, N., Incredible Optical Illusions, Simon and Schuster, New York
(1998).

[135] Ros, L. and Thomas, F., Overcoming superstrictness in line drawing
interpretation, IEEE Trans. Pattern Anal. Machine Intell. 24 (4) (2002)
pp. 456–466.

[136] Rosenfeld, A., Hummel, R.A. and Zucker, S.W., Scene labeling by relax-
ation operations, IEEE Trans. Syst., Man Cybern. 6(6) (1976) pp. 420–
433.

[137] Russel, S. and Norvig, P., Artificial Intelligence: A Modern Approach,
2nd edn., Prentice Hall, New Jersey (2003).

[138] Schaefer, T.J., The complexity of satisfiability problems, Proc. of the
10th ACM Symposium on the Theory of Computing, STOC’78, San Diego
(1978) pp. 216–226.

[139] Schiex T., Arc consistency for soft constraints, in Principles and Practice
of Constraint Programming – CP 2000, Singapore (2000) LNCS 1894,
Springer, pp. 411–424.

[140] Schiex, T., Fargier, H. and Verfaillie, G., Valued constraint satisfaction
problems: hard and easy problems, Proc. 14th IJCAI, Montreal (1995)
pp. 631–637.

[141] Schlesinger, D., Exact solution of permuted submodular MinSum prob-
lems, Proc. 6th Int. Conf. Energy Minimization Methods in Computer
Vision and Pattern Recognition, Ezhou, Hubei, China (2007) pp. 28–38.

[142] Schlesinger, M., Syntactic analysis of two-dimensional visual signals in
noisy conditions, Kibernetika 4 (1976) pp. 113–130 (in Russian).

[143] Schlesinger, M., Mathematical Tools of Image Processing, Naukova
Dumka, Kiev (1989) (in Russian).

[144] Seckel, A., The Great Book of Optical Illusions, Firefly Books, Toronto
(2002).

[145] Shapira, R. and Freeman, H., Computer description of bodies bounded
by quadric surfaces from a set of imperfect projections, IEEE Trans.
Comput. 27(9) (1978) pp. 841–854.

[146] Shapira, R. and Freeman, H., The cyclic order property of vertices as an
aid in scene analysis, Commun. ACM 22(6) (1979) pp. 368–375.

BIBLIOGRAPHY 247

[147] Shpitalni, M. and Lipson, H., Identification of faces in a 2D line drawing
projection of a wireframe object, IEEE Trans. Pattern Anal. Machine
Intell. 18 (10) (1996) pp. 1000–1012.

[148] Schrijver, A., A combinatorial algorithm minimizing submodular func-
tions in strongly polynomial time, J. Combinator. Theory Ser. B 80
(2000) pp. 346–355.

[149] Sommer, W., Jetzt lerne ich CAD, Markt+Technik (2002).

[150] Straforini, M., Coelha, C. and Campani, M., Extraction of vanishing
points from images of indoor and outdoor scenes, Image Vision Comput.
11(2) (1993) pp. 91–99.

[151] Sugihara, K., Picture language for skeletal polyhedra Comput. Graph.
Image Process. 8 (1978) pp. 382–405.

[152] Sugihara, K., Mathematical structures of line drawings of polyhedrons.
Towards man-machine communication by means of line drawings, IEEE
Trans. Pattern Anal. Machine Intell. 4 (1982) pp. 458–469.

[153] Sugihara, K., Classification of impossible objects, Perception 11 (1982)
pp. 65–74.

[154] Sugihara, K., A necessary and sufficient condition for a picture to rep-
resent a polyhedral scene, IEEE Trans. Pattern Anal. Machine Intell. 6
(5) (1984) pp. 578–586.

[155] Sugihara, K., Machine Interpretation of Line Drawings, MIT Press,
Cambridge, MA (1986) (freely available on Kokichi Sugihara’s website:
http:/www.simplex.t.u-tokyo.ac.jp/ sugihara).

[156] Sugihara, K., Three-dimensional realization of anomalous pictures - an
application of picture interpretation theory to toy design, Pattern Recog.
30(7) (1997) pp. 1061–1067.

[157] Syeda-Mahmood, T., Indexing of technical line drawing databases IEEE
Trans. Pattern Anal. Machine Intell. 2l(8) (1999) pp. 737–751.

[158] Tai, A., Kittler, J., Petrou, M. and Windeatt, T., Vanishing point de-
tection, Image Vision Comput. 11(4) (1993) pp. 240–245.

[159] Topkis, D., Supermodularity and Complementarity, Princeton University
Press (1998).

[160] Tsang, E., Foundations of Constraint Satisfaction, Academic Press, New
York (1993).

[161] Tse, P.U., Volume completion, Cognit. Psychol. 39 (1999) pp. 37–68.

248 BIBLIOGRAPHY

[162] Turner, A., Chapman, D. and Penn, A., Sketching space, Comput.
Graph. 24 (2000) pp. 869–879.

[163] van Hoeve, W.-J. and Katriel, I., Global constraints, Chapter 6 of Hand-
book of Constraint Programming, Rossi, F., van Beek, P. and Walsh, T.
(eds.) Elsevier Science, New York (2006).

[164] Varley, P.A.C. and Martin, R.R., A system for constructing boundary
representation solid models from a two-dimensional sketch, Proc. Geo-
metric Modelling and Processing 2000, Martin, R. and Wang, W. (eds.)
IEEE Computer Society Press (2000) pp. 13–32.

[165] Varley, P.A.C. and Martin, R.R., The junction catalogue for labelling line
drawings of polyhedra with tetrahedral vertices, Int. J. Shape Modell. 7
(1) (2001) pp. 23–44.

[166] Varley, P.A.C. and Martin, R.R., Estimating Depth from Line Draw-
ings, Proc. 7th ACM Symp. on Solid Modelling and Applications (2002)
pp. 180–191.

[167] Varley, P.A.C. and Martin, R.R., Deterministic and probabilistic ap-
proaches to labelling line drawings of engineering objects, Int. J. Shape
Modell., 9 (1) (2003) pp. 79–99.

[168] Varley, P.A.C., Suzuki, H. and Martin, R.R., Interpreting line drawings
of objects with K-vertices, Proc. Geometric Modelling and Processing
04, Beijing, Hu, S.-M. and Pottmann, H. (eds.) IEEE Computer Society
(2004) pp. 249–258.

[169] Varley, P.A.C., Martin, R.R. and Suzuki, H., Frontal geometry from
sketches of engineering objects: is line labelling necessary, Comput.-Aided
Des. 37 (2005) pp. 1285–1307.

[170] Vosniakos, G., Conversion of wireframe to ACIS solid models for 2 1
2 -D

engineering components, Int. J. Adv. Manufactur. Technol. 14(3) (1997)
pp. 199–209.

[171] Vosniakos, G., An intelligent software system for the automatic genera-
tion of NC programs from wireframe models of 2 1

2D mechanical parts,
Comput, Integr. Manufactur. Syst. 11(1/2) (1998) pp. 53–65.

[172] Walker, P., Dixon, S. and Smith, D., Associating object names with
descriptions of shape that distinguish possible from impossible objects,
Visual Cognit. 7(5) (2000) pp. 597–627.

[173] Waltz, D., Understanding line drawings of scenes with shadows, in The
Psychology of Computer Vision, Winston, P.H. (ed.) McGraw-Hill, New
York (1975) pp. 19–91.

BIBLIOGRAPHY 249

[174] Werner, T., A Linear Programming Approach to Max-sum Problem:
A Review, IEEE Trans. Pattern Anal. Machine Intell. 29(7) (2007)
pp. 1165–1179.

[175] Wesley, M.A. and Markowsky, G., Fleshing out projections IBM J. Res.
Develop. 25(6) (1981) pp. 934–954.

[176] Whiteley, W., From a line drawing to a polyhedron, J. Math. Psychol.
31 (1987) pp. 441–448.

[177] Williams, L.R., Topological reconstruction of a smooth manifold-solid
from its occluding contour, Int. J. Comput. Vision 23(1) (1997) pp. 93–
108.

Index

0/1/all constraints, 217
2Reg constraint, 38
2SAT, 217, 227
2-tangent junction, 172
3D reconstruction, 231
3-consistency, 203
3-cyclic consistency, 197
3-tangent junction, 80, 111, 130
4-tangent junction, 171

AC2001, 188
addition-with-ceiling operator (+m),

193
affine constraints, 220
aggregation operator (⊕), 192
AllDiff constraint, 188
ambiguous figure, 89, 231
ambiguous wireframe projection, 141,

153
angle parity, 151
anti-Horn clause, 220
apex of a cone, 179, 226
arc consistency, 187
arithmetical constraints, 219

‘Belvedere’ (by M.C. Escher), 8, 102,
224

best block, 212
Bool(P), 203
branch and bound, 191, 193
B-rep model, 143

‘c’ label, 84
C junction, 80, 101, 172, 224
C3 surfaces and edges, 79, 127, 179
CAD/CAM, 125
catalogue of junction labelings, 23,

46, 59-60, 134-136

Col1Reg constraint, 40
Col2Reg constraint, 40
collinear lines/points, 229
collinearity constraint 105, 117
common-surface constraints, 146
complexity, 155
computer-enhanced perception, 55
computer graphics, 72, 125
concave-edge constraints 109
concave line label, 21, 128
consistency, 183
constraint satisfaction problem, 183
continuous optimization, 76
contrast failure, 227
convex-edge constraints, 109
convex line label, 21, 128
coplanarity constraints 112, 117, 127,

147-148
cost, 192, 194
crack line 52, 107, 110
crisp constraints, 192
CSP, 183
cubic corner, 12, 55, 94, 117-118, 232
curvature-L junction 80, 111, 130, 171
curved objects 79
cut-set rule, 41, 155
cyclic consistency, 198
cyclic path, 43
cyclic-path constraint, 41

depth information (displaying of),
72

depth label (relative), 57, 180
depth parity, 151
depth reversal, 141

251

252 INDEX

directional arc consistency (DAC),
197

discontinuity of curvature, 80
discontinuity of surface curvature,

227
discrete valuation structure, 193
difference operator (�), 193
dual space 41, 97, 155

EAC, 197
EDAC, 197
equiangular vertex, 73
equivalence-preserving transformation

(EPT), 195
Extend, 196
equivalent VCSPs, 195
existential arc consistency (EAC), 197
existential directional arc consistency

(EDAC), 197
extended trihedral vertex, 21, 60
extension of an assignment, 195
extremal edge, 79, 128, 171
extremal line, 128

face, 142
face boundary 142
face circuit, 143, 176
face-circuit fragment, 176
fair valuation structure, 193
faithful encoding, 51
FDAC, 197
finitely bounded VCSP, 202
focal length, 102
fractional weights, 194
frequency assignment, 198, 200
frontal geometry, 231
frontier of a region, 137
full directional arc consistency (FDAC),

197
fuzzy CSP, 193

general relative position, 127
general viewpoint assumption (GVA),

6, 26, 85, 88
generalized arc consistency, 188, 197

generic label (�), 26, 110
genetic algorithms, 231
Gestalt principles, 57, 233, 235
gradient direction, 98, 117, 173
gradient-direction constraints, 88, 174
gradient-direction propagation con

straint, 176
gradient-direction/semantic-label con-

straints, 90, 175
gradient space, 97, 173

hidden lines, 233
hidden-part reconstruction, 233
hidden-surface coplanarity constraints,

114
hidden surfaces, 71
higher-order consistency, 203
hill climbing, 231
holes, 130, 132, 137, 141-142, 152-153,

169
horizontalness, 232
Horn clause, 185, 219
HORNSAT, 185
Huffman–Clowes catalogue, 21-23
human vision, 56

image enhancement, 73
impossible closed curve class, 7
impossible fork, 8
impossible wireframe projection, 137-

138, 161
inflation, 75, 232
in-scope irreducibility, 202
integral VCSP, 210
intersection constraint, 105
invisible line, 233

K junction, 37, 167
kiss, 171

L junction, 23, 37, 172
L1(+), L1(−), L2(+), L2(−) junctions,

45
L-chain constraint, 41
label transition (see also C junction),

101, 148, 173, 224

INDEX 253

legal labeling of a wireframe projec-
tion, 138

leximin, 193
line label, 128
line thickness, 72
linear constraints, 102
linear features, 229
local search, 231
locally planar face, 87
locally planar surface, 84, 173, 176

majority polymorphism, 218
manifold object, 79
man-made objects, 83
matter-space ambiguity, 141, 143
max-closed constraints, 219, 226
MAX-CSP, 193, 195
maximal matching, 188
maximally generically reconstructible

substructure, 120
minimum (weighted) cut, 221, 223
missing line, 233
Möbius strip, 140, 145
model-based vision, 236
MSDA, 76, 94, 179, 232
MSDL, 76, 94
Multi junction, 37, 166
multimorphism, 222, 229

necessary and sufficient conditions for
realizability, 125, 138-141

Necker cube, 141
neighbourhood substitution, 189
node consistency, 197
non-manifold scenes, 52
NP-completeness, 121, 155, 229
null intersection, 160
nullary constraint (c∅), 195
numerical depth labels, 126-127
numerical optimization, 76
numerical symmetry, 235

oblique rectangular corner, 73
occluded line, 233
occluding line label, 21, 128

optimal soft arc consistency, 198
origami world, 52, 229
orthogonal edge, 82, 87, 89-91, 117,

174, 232
orthographic projection, 97, 117, 152
OSAC, 198
outer-boundary constraint, 22, 137,

227

‘p’ label, 84, 112, 114, 175-176
Par2-2, Par3-2, Par3-3 constraints,

45
ParCon constraint, 26
parallel curve segments, 95
parallel lines, 229
parallel lines constraint, 26, 117, 127
parallel junctions, 45
parallel path, 27-28
parity constraint, 132
ParOcc constraint, 26
partially-visible object recognition,

236
path in a wireframe projection, 159
Peak junction, 37, 166
penalty, 192
Penrose triangle, 7, 102, 122, 149-150,

224
Perkins’s rules, 59, 74-75, 94, 175
perspective projection, 66, 98, 102
phantom edge, 79
phantom junction, 224
Phi junction, 23, 37, 167
planar 3SAT, 228
planarity labels, see ‘p’ label
planarity constraints, 86
planning, 198
polyhedral junction constraint, 33
polymorphism, 218, 229
pottery world, 227
Project, 196

quadratic posiform, 203
quadratic pseudo-boolean function op-

timization, 203

ramp line, 110

254 INDEX

rational valuation structure, 193
realizability, 125, 138-141
reconstruction, 231
reduction operations, 183
reflection line, 107, 110
region constraint, 137
regular solid, 127
relation, 184
rich labels, 79, 173
right angles, 232

SAC transformation, 120
SAT, 185, 188, 221
scope, 184
sea monster, 236
search, 183
semantic labels, 8, 127
semi-fold point, 80
semi-ring CSP, 192
shadow lines, 107, 110, 229
sidedness reasoning, 42
signature of a junction, 163
similar curve segments, 95
simple junction, 32
simple polyhedral wireframe projection,

150
simple vertex, 150
simplification of combinatorial problems,

183
simulated annealing, 231
size/distance ambiguity, 120
sketch, 56, 179, 192
smooth edge, 171
snowflake junction, 23, 132
soft arc consistency, 192
soft arc consistency transformation,

200
soft consistency, 183
soft constraint, 25, 50
soft constraint satisfaction, see VCSP
soft neighbourhood substitution, 212
straight edge formation assumption, 79,

86, 147
strictly monotone parallel path, 28
strictly monotonic operator, 193
strictly positive cyclic path, 43

strictly positive intersection, 160
strictly positive path in a wireframe

projection, 159
submodular function, 222
submodular function minimization,

222
subproblem of a VCSP, 195
substitutable, 189
substitution operations, 183
superstrictness, 43, 71, 120, 162, 168,

232
surface mark, 110
surface normal discontinuity edge, 128
symmetric vertex with dihedral right

angle, 73
symmetric vertex with right angle, 73
symmetry, 179
syzygy, 121

T junction, 23, 37, 80, 172
T= junction, 107, 116
T> junction, 107, 114
T-junction constraint, 106
T-junction label, 107
tabu search, 231
tangential edges and surfaces, 114, 116,

169, 226
tangential intersection curve (TIC),

169
terminal junction, 80, 171
tetrahedral vertex, 37, 163, 227
TIC, 169
topologically equivalent labelings, 169
tournament operation, 224
tournament-pair multimorphism, 224
tractability, 217
tractable constraint class, 220
trihedral vertex, 21, 134-136

unambiguous picture, 150
UnaryProject, 196
unit propagation, 185, 188

VAC, 203

INDEX 255

VAC decomposition, 209
valuation, 194
valuation structure, 192
valued constraint, 25
valued constraint satisfaction problem,

173, 175, 191, 194
vanishing point, 103, 105, 132, 146, 151,

180, 227, 229
VCSP, 173, 175, 191, 194
VCSP(sm), 202
vectorial equation solving, 71
verticality, 232
viewpoint-dependent edge, 127
viewpoint-dependent vertex, 171
virtual arc consistency, 203
virtual cubic corner, 76
virtual edge, 79
virtual junction, 224
volume completion, 235
VSAT, 221

W junction, 23, 37, 130
W(+), W(−) junctions, 45, 130
W0, W00 junctions, 171
W/Y junction pair, 147
warehouse allocation, 198
weight, 192
wireframe model, 126, 152
wireframe-path constraint, 156, 159,

168
wireframe projection, 125-126

X junction, 37, 130
X(=), X(�=) junctions, 132

Y junction, 23, 37, 130
Y(+), Y(−) junctions, 45, 130
Y0 junction, 171

ZOA (zero/one/all) constraints, 217

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.001 841.997]
>> setpagedevice

